USN					

Internal Assessment Test 1 – July 2023

			11110111	er 1 1 00 0 00 1110111	1000	1 3uly 202.						
Sub:	Operating S	ystems				Sub Code:	21CS44	Brai	nch:	ISE		
Date:	09/07/2023	Duration:	90 min's	Max Marks:	50	Sem/Sec:	VI A, B & C			•	OE	E
	Answer any FIVE FULL Questions										CO	RBT
1a)	1a) What is a thread? Explain the different multithreading models.										CO2	L1
1b)	b) What is IPC? Explain direct and indirect communication with respect to message passing									5	CO1	L2
2									1	10	CO1	L2
	diagram.											
3	Differentiate between a process and a program. Describe the life cycle of a process. Also							Also]	10	CO1	L2
	explain PCB with a neat diagram.											
4a)	Differentiate between multiprogramming, multiprocessing and multitasking systems.									5	CO1	L2
4b)										5	CO1	L2
	machines.											
5a)	List the reasons for process termination.									5	CO1	L1
5b)	Explain MS-DOS layer structure with a neat diagram.									5	CO1	L2
6	Consider the set of given process with the Burst Process Burst Time								1	10	CO2	L3
	time P1 32											
	Calculate the Average Waiting Time and Turn P2 5											
	Around Time for Shortest Job First (SJF) and First P3 7											
	Come First Ser	rve(FCFS)			P4		7					
	P5 15											

Faculty Signature CCI Signature HOD Signature

USN					

Internal Assessment Test 1 – July 2023 Scheme and Solution

G 1	0 4 9					Sub	21.00.44	D 1	TOE		
Sub:	Operating S	ystem				Code:	21CS44	Branch:	ISE		
Date:	09/07/2023	Duration:	90 min's	Max Marks:	50	Sem/Sec:	IV A, B & C			OE	
				<u>VE FULL Qι</u>					RKS		RBT
1a)				ent multithrea				2+3		CO2	L1
		•	-	ocess. Threads	•	•	•				
				lelism. Threads							
	to a classical p		perating sy	ystem by reduc	ing th	e overnead t	nread is equiva	aient			
	to a classical p	nocess.									
	\$ \$ \$	user threa	d «	\$ \$.		9	**				
	> \ \ \	} """	ີ }	`\ \ \ \	≥	>	> >				
	$\setminus \setminus \setminus$		_	\		> >	> >				
	V										
	1	kernel		X		(k) (k	(k) (k)				
	(k) ←	thread		ŔŔĸ							
	Many-to			ny-to-many			-to-one				
	thread n			read model			id model				
1b)		Explain dire	ect and ind	lirect commun	icatio	on with resp	ect to messag	e	5	CO1	L2
	passing.										
	Interprocess c	ommunication	n is the n	nechanism pro	vided	by the one	rating system	that			
				h each other.							
	_			that some ever							
	data from one	process to and	other.								
	(a) Messa	ge passing.	(b) shar	red memory.							
	proce	ess A	_ р	rocess A							
	proce	ess B	shar	red memory +	1						
	proof		р	rocess B							
	messag	e queue									
		m ₃ m _n									
	ker	nel		kernel							
	(8	1)		(b)							
2		ess states with	h state tra	ansition diagra	am. A	lso explain	PCB with a r	neat 2+	4+4	CO1	L2
	diagram	1 6 1	,•,	1 ' 1	, ,1	1 .		1			
	A process is implemented i		an entity	which represe	nts th	ie basic uni	it of work to	be			
	implemented i	ii tile system.									
		dispa	itch								
	creation		-	terminati	on						
	•	Ready	Runr	iiig	→						
		time	out 7								
	unbloc	king	blo	ocking							
		Block	\sim	•							
		BIOCH									
								1		ĺ	

Pro	Process State Process Number Program Counter Registers Memory Limits Open File Lists Misc. Accounting and Status Data Ocess Control Block				
Differer	ntiate between a process	and a program. Describe	e the life cycle of a process.	5+5	CO1
	Program	Process			
	of set of instructions in ning language	It is a sequence of instruction e	wecution		
It is a sta	tic object existing in a file form	It is a dynamic object (i.e. prog execution)	ram in		
Program storage of	is loaded into secondary evice	Process is loaded into main me	emory		
The time	span is unlimited	Time span is limited			
It is a par	ssive entity	It is an active entity			
Start	Ready	Running	ated		
Differer	ntiate between multiprog	ramming, multiprocessin	ng and multitasking systems	5 5	CO1
	Wait			s 5	CO1
Differer	ntiate between multiprog	ramming, multiprocessin Multitasking In Multitasking, a single resource is	ng and multitasking systems	S 5	CO1
Differer S.No.	ntiate between multiprog Multiprogramming In multiprogramming, multiple programs execute at a same time	ramming, multiprocessin Multitasking In Multitasking, a single resource is used to process multiple tasks.	ng and multitasking systems Multiprocessing In multiprocessing, multiple processing units are used by a	5 5	CO1
Differer S.No.	Multiprogramming In multiprogramming, multiple programs execute at a same time on a single device. The process resides in	ramming, multiprocessin Multitasking In Multitasking, a single resource is used to process multiple tasks. The process resides in the	In multiprocessing, multiple processing units are used by a single device. The process switches from one to another CPU as multiple processing units are	S 5	CO1

	Some arithmetic errors such as, division-by-zero or storing a number greater than the hardware capacity also leads to process termination.			
	7. Input/Output Failure: It refers to an error that results from some input/output operation, such as inability to find a file, failure of a read or write operation even after trying a certain number of times.			
	8. Misuse of Data: Misuse of data i.e., using wrong type or un-initialized data also terminates the process.			
	9. Exceeding the Waiting Time Limit: Exceeding the waiting time for occurrence of an event also terminates the process.			
	10. Invalid Instruction Execution: When a process is trying to execute an instruction that actually does not exist, the process gets terminated.			
	11. Using a Privileged Instruction: An attempt to use an operating system instruction by a process stops its execution.			
	12. Interference by an Operating System or an Operator: An operator or an operating system sometimes interferes with process execution and leads to its termination. One such example is the occurrence of deadlocks.			
	13. Parent Process Termination: When a parent process terminates, it causes all its child processes to stop their execution.			
	14. Request from a Parent Process: A parent process has a right to terminate any of its child processes, at any time during their execution.			
b)	Explain MS-DOS layer structure with a neat diagram.	2+3	CO1	L2
	What is MS-DOS? APPLICATION PROGRAM RESIDENT SYSTEM PROGRAMS			
	MS-DOS DEVICE DRIVERS ROM BIOS DEVICE DRIVERS			
	MS-DOS Layer Structure			
6	Consider the set of given process with the Burst time Process Burst	5+5	CO2	L3

	Time
P1	32
P2	5
P3	7
P4	7
P5	15

Calculate the Average Waiting Time and Turn Around Time for Shortest Job First (SJF) and First Come First Serve (FCFS)

Faculty Signature CCI Signature HOD Signature