

USN

Internal Assessment Test 2 – May 2023

Sub: SYSTEM SOFTWARE AND COMPILERS Sub Code: 18CS61 Branch: CSE

Date: 23.05.2023 Duration: 90 mins Max Marks: 50 Sem / Sec: VI/ A,B,C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Write the algorithm to calculate FIRST and FOLLOW. Calculate FIRST and

FOLLOW for the non-terminals present in the given grammar.

S → aBDh

B → cC

C → bC / ∈

 D → EF

E → g / ∈

 F → f / ∈

Algorithm to calculate FIRST:

FIRST (α) is defined as the collection of terminal symbols which are the first letters

of strings derived from α.

If X is Grammar Symbol, then First (X) will be −

 If X is a terminal symbol, then FIRST(X) = {X}

 If X → ε, then FIRST(X) = {ε}

 If X is non-terminal & X → a α, then FIRST (X) = {a}

 If X → Y1, Y2, Y3, then FIRST (X) will be

(a) If Y is terminal, then

 FIRST (X) = FIRST (Y1, Y2, Y3) = {Y1}

(b) If Y1 is Non-terminal and

 If Y1 does not derive to an empty string i.e., If FIRST (Y1) does not contain ε then,

FIRST (X) = FIRST (Y1, Y2, Y3) = FIRST(Y1)

(c) If FIRST (Y1) contains ε, then.

 FIRST (X) = FIRST (Y1, Y2, Y3) = FIRST(Y1) − {ε} ∪ FIRST(Y2, Y3)

Similarly, FIRST (Y2, Y3) = {Y2}, If Y2 is terminal otherwise if Y2 is Non-terminal

then

 FIRST (Y2, Y3) = FIRST (Y2), if FIRST (Y2) does not contain ε.
 If FIRST (Y2) contain ε, then

 FIRST (Y2, Y3) = FIRST (Y2) − {ε} ∪ FIRST (Y3)

Similarly, this method will be repeated for further Grammar symbols, i.e., for Y4, Y5,

Y6 … . YK

Algorithm to calculate FOLLOW:

Follow (A) is defined as the collection of terminal symbols that occur directly to

the right of A.

FOLLOW(A) = {a|S ⇒* αAaβ where α, β can be any strings}

Rules to find FOLLOW

[10] CO2 L3

 If S is the start symbol, FOLLOW (S) ={$}

 If production is of form A → α B β, β ≠ ε.

(a) If FIRST (β) does not contain ε then, FOLLOW (B) = {FIRST (β)}

Or

(b) If FIRST (β) contains ε (i. e. , β ⇒* ε), then

 FOLLOW (B) = FIRST (β) − {ε} ∪ FOLLOW (A)

∵ when β derives ε, then terminal after A will follow B.

 If production is of form A → αB, then Follow (B) ={FOLLOW (A)}.

Computation of FIRST and FOLLOW for the following grammar.

S → aBDh

B → cC

C → bC / ∈

 D → EF

E → g / ∈

 F → f / ∈

FIRST (S) = {a}

FIRST (B) = {c}

FIRST (C) = {b, ∈}

FIRST (D) = {f, g, ∈}

FIRST (E) = {g, ∈}

FIRST (F) = {f, ∈}

FOLLOW(S) = {$}

FOLLOW(B) = {f, g, h}

FOLLOW(D) = {h}

FOLLOW(C) = {f, g, h}

FOLLOW(E) = {f, h}

FOLLOW(F) = {h}

2 Construct a predictive parsing table for the following grammar. Show the parsing of

the input string: ((a,a)). Is it LL (1)?

S → (L) / a

 L → L , S / S

Step1: After removing left recursion

S → (L) / a

L → SL’

L’ → ,SL’ | Ɛ

Step2: Calculate FIRST and FOLLOW

FIRST(S) = {(, a}

FIRST (L)= { (, a}

FIRST (L’)={, , Ɛ}

FOLLOW (S) = { $, , ,) }

FOLLOW (L) ={)} = Follow (L’)

 Step 3: Predictive Parsing Table

 () , a $

S S → (L) S → a

[10] CO2 L3

L L → SL’

 L → SL’

L’ L’ → Ɛ

L’→ ,SL’

 Yes, it is LL(1).

Step4: Parsing of the input string ((a,a))
Stack Input String Action

$ S ((a,a))$ S → (L)

$)L(((a,a))$ Match

$)L (a,a))$ L → SL’

$)L’S (a,a))$ S → (L)

$)L’)L((a,a))$ Match

$)L’)L a,a))$ L → SL’

$)L’)L’S a,a))$ S → a

$)L’)L’a a,a))$ Match

$)L’)L’ ,a))$ L’→ ,SL’
$)L’)L’S, ,a))$ Match

$)L’)L’S a))$ S → a

$)L’)L’a a))$ Match

$)L’)L’))$ L’ → Ɛ

$)L’)))$ Match

$)L’)$ L’ → Ɛ

$))$ Match

$ $ Accepted

3 i) What is meant by handle and handle processing (handle pruning)? Explain

with an example.

Solution:

A handle is a substring that connects a right-hand side of the production rule in the

grammar and whose reduction to the non-terminal on the left-hand side of that

grammar rule is a step along with the reverse of a rightmost derivation.

Removing the children of the left-hand side non-terminal from the parse tree is

called Handle Pruning. A rightmost derivation in reverse can be obtained by handle

pruning.

Right Sequential Form Handle Reducing Production

id + id * id id E ⇒ id

E + id * id id E ⇒ id

[5+5] CO2 L2

E + E * id id E ⇒ id

E + E * E E + E E ⇒ E + E

E * E E * E E ⇒ E * E

E (Root)

ii) Explain the role of parser and different error recovery strategies.

Role of Parser:

 It obtains a string of tokens from the lexical analyser

 verifies that the string can be generated by the grammar for the source

language.

 The parser returns any syntax error for the source language

 It detects and reports any syntax errors and produces a parse tree from

which intermediate code can be generated.

Different error recovery strategies:

There are mainly five error recovery strategies, which are as follows:

1. Panic mode

2. Phrase level recovery

3. Error production

4. Global correction

5. Symbol table

Panic Mode:

This strategy is used by most parsing methods. In this method of discovering the

error, the parser discards input symbols one at a time. This process is continued

until one of the designated sets of synchronizing tokens is found. Synchronizing

tokens are delimiters such as semicolons or ends. These tokens indicate an end of

the input statement.

Phrase Level Recovery:

In this strategy, on discovering an error, parser performs local correction on the

remaining input. It can replace a prefix of the remaining input with some string. This

actually helps the parser to continue its job. The local correction can be replacing the

comma with semicolons, omission of semicolons, or, fitting missing semicolons.

Error Production:

It requires good knowledge of common errors that might get encountered, then we

can augment the grammar for the corresponding language with error productions

that generate the erroneous constructs. If error production is used during parsing,

we can generate an appropriate error message to indicate the error that has been

recognized in the input.

Global Correction:

We often want such a compiler that makes very few changes in processing an

incorrect input string to the correct input string. Given an incorrect input string x and

grammar G, the algorithm itself can find a parse tree for a related string y (Expected

output string); such that a number of insertions, deletions, and changes of token

require to transform x into y is as low as possible. Global correction methods increase

time & space requirements at parsing time. This is simply a theoretical concept.

Symbol Table:

In semantic errors, errors are recovered by using a symbol table for the corresponding

identifier and if data types of two operands are not compatible, automatically type

conversion is done by the compiler.

4 What are the different types of conflicts in Shift Reduce Parser? Show the parsing of

the input string (id+id*id)/id by the shift reduce parser and recognize the conflicts

while parsing the input string. Consider the following grammar.

E→E+T | E-T | T

T→T*F | T/F | F

 F→ (E) | id

Solution:

Different types of conflicts in shift reduce parser:

1. Shift Reduce conflicts

2. Reduce Reduce conflicts

Stack Input Action

$ (id+id*id)/id$ Shift

$(id+id*id)/id$ Shift

$(id +id*id)/id$ Reduce F→id

$(F +id*id)/id$ Reduce T→F

$(T +id*id)/id$ Reduce E→T

$(E +id*id)/id$ Shift

$(E+ id*id)/id$ Shift

$(E+id *id)/id$ Reduce F→id

$(E+F *id)/id$ Reduce T→F

$(E+T *id)/id$ Shift

$(E+T* id)/id$ Shift

$(E+T*id)/id$ Reduce F→id

$(E+T*F)/id$ Reduce T→T*F

$(E+T)/id$ Reduce E→E+T

$(E)/id$ Shift

[10] CO2 L3

$(E) /id$ Reduce F→(E)

F /id Reduce T→F

T /id Shift

T/ id Shift

$T/id $ Reduce F→id

$T/F $ Reduce T→T/F

$T $ Reduce E→T

$E $ Accepted

5 Write a grammar and SDD for simple Desk Calculator and show the annotated parser

tree for expression (8+7) / (2+3)

[10] CO2 L3

6 i) What is left factoring? Write the following grammar after left factored.

S → bSSaaS / bSSaSb / bSb / a

[5+5] CO2 L3

Solution:
Left factoring is a process by which the grammar with common prefixes is transformed

to make it useful for Top-down parsers. If more than one grammar production rules has

a common prefix string, then the top-down parser cannot make a choice as to which

of the production it should take to parse the string in hand.

Step1:

S → bSS’ / a

S’→SaaS |SaSb|b

Step2:

S → bSS’ / a

S’→SaS’’ |b

S’’→aS | Sb

ii) Discuss S-attributed and L-attributed SDD.

S-attributed SDT :

a. If an SDT uses only synthesized attributes, it is called as S-attributed

SDT.

b. S-attributed SDTs are evaluated in bottom-up parsing, as the values

of the parent nodes depend upon the values of the child nodes.

c. Semantic actions are placed in rightmost place of RHS.

L-attributed SDT:

d. If an SDT uses both synthesized attributes and inherited attributes

with a restriction that inherited attribute can inherit values from left

siblings only, it is called as L-attributed SDT.

e. Attributes in L-attributed SDTs are evaluated by depth-first and left-

to-right parsing manner.

f. Semantic actions are placed anywhere in RHS.

g. Example : S->ABC, Here attribute B can only obtain its value either

from the parent – S or its left sibling A but It can’t inherit from its

right sibling C. Same goes for A & C – A can only get its value from

its parent & C can get its value from S, A, & B as well because C is

the rightmost attribute in the given production.

 CI CCI HOD

