
wait (S) { 

while S <= 0 

; // no-op 

S--; 

signal (S) { 

S++;} 

 

 

USN 

Internal Assessment Test  2(Solution and 

Schemes) – August 2022 

Sub: Operating System Sub Code: 18CS43 Branch: ISE 

Date: 4/08/2022 Duration: 90 min’s Max Marks: 50 Sem/Sec: IV A, B & C OBE 

Answer any FIVE FULL Questions MARKS CO RBT 

1 Explain the various classical synchronization problems 

1. Reader’s writer problem 

2. Dining Philosopher problem 

3. Bounded Buffer 

10 CO1 L2 

2 Explain scheduling algorithms with examples. 

1. First come first serve 

2. Shortest Job first (preemptive and non-preemptive) 

3. Priority  

4. Round Robin Scheduling 

 

10 CO1 L2 

3  Justify the way deadlocks can be prevented by considering four necessary conditions 

cannot   hold. 

1. Mutual exclusion 

2. Hold and wait 

3. Circular wait 

4. No preemption  

 
 

10 CO2 L2 

4 What are semaphores? Explain two primitive semaphore operations. What are its 

advantages? 

 A semaphore is a synchronization tool is used solve various synchronization 

problem and can be implemented efficiently. 

 Semaphore do not require busy waiting. 

A semaphore S is an integer variable that, is accessed only through two standard 

atomic operations: wait () and signal (). The wait () operation  was originally termed 

P and signal() was called V. 

Definition of wait (): 

Definition of signal (): 

 

 

10 CO1 L1 

5a) Explain multilevel and multilevel feedback queue with relevant diagram. 

Multilevel  

Useful for situations in which processes are easily classified into different groups. 

For example, a common division is made between foreground (or interactive) processes 

and background (or batch) processes. 

6 CO1 L2 

          

 



The ready-queue is partitioned into several separate queues  

The processes are permanently assigned to one queue based on some property like 

memory size process priority or process type. Each queue has its own scheduling 

algorithm. 

For example, separate queues might be used for foreground and background processes. 

Multilevel feedback queue  

A process may move between queues 

The basic idea: Separate processes according to the features of their CPU bursts. For 

example 

If a process uses too much CPU time, it will be moved to a lower-priority queue. This 

scheme leaves I/O-bound and interactive processes in the higher-priority queues. 

If a process waits too long in a lower-priority queue, it may be moved to a higher-priority 

queue This form of aging prevents starvation. 

 



P.T.O. 
 

 

 
 

5b) What is pre-emptive scheduling and non-preemptive scheduling? 

 

4  CO1  L1 

6 For the following set of process find the avg. waiting time and avg. turn around 

using Gantt chart for a) Priority b) SJF (preemptive and non- preemptive)  

c) RR (quantum= 5) 

Process Arrival Time Burst Time Priority 

P1 0 15 1 

P2 2 11 4 

P3 4 8 2 

P4 6 17 3 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

10 CO2 L2 



 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Faculty Signature CCI Signature HOD Signature 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

     

 

 

 

 

 

Faculty Signature CCI Signature HOD Signature 


