Internal Assessment Test 2 — May 2023
QP SCHEME

Sub:

Sub

File Structures Code: 181S61

Branch:

ISE

Date:

23/05/2023 | Duration: | 90 min’s | Max Marks: [50 | Sem/Sec: | VIA,B&C

OBE

Answer any FIVE FULL Questions

MARKS

CO |RBT

Explain all the operations required to maintain an indexed file with class declarations.
Operations Required to Maintain an Indexed File

Create the original empty index and data files,

Load the index file into memory before using it,

Rewrite the index file from memory after using it,

Add data records to the data file,

Delete records from the data file,

Update records in the data file,

AR YA YA YA Y

Update the index to reflect changes in the data file.

—1ass RecTyPe”

ext IndexedF1l le TN Bt
recoxrd) i // X ead nex /7 read by key
3 \Re:‘l\,'i’:eyiv RecTyDe A
(char S . record): u
append (CO‘ﬂ.‘\:t.Reirg{iizj,&const ReC’IYP&" & : record) )
o % int mode;ioszrlnllos::out,
.inlios: out);

s record);

Read

int Update (char

int Create (char
= = name,

* name, -

e
int mode=10S:
int Open (char =

: i = 100) ; S/ aecce?
o P g mifxiiise and delete
protected: (,o-((ﬂ:i'-"« v‘o‘,.‘, G 2o
Text Index Index; T A ey Bl el S
BufferFile IndexFile; e o~ ¢ /
Text IndexBuf fer IndexBuffer;
RecordFile<RecType> DataFile;
char * FileName; // base file name for file
int SetFileName (char * fileName,
char *& cdataFileName, char *& indexFileName) ;

—Text IndexedFile ()

Y} o
// The template parameter RecType must have the following metnod
/7 char * Key ()

Figure 7.7 Class TextindexedFile

10

COo2 | L2

2.a

Explain the importance of secondary keys for searching and illustrate with suitable example

v/ Two or more Secondary key can be used to retrieve special subsets of records from the data
file.

An example is illustrated in previous figure & one can respond to requests such as:
Find the recording with Label ID COL37483 (Primary Key acess);
Find all the recordings of Bethoven’s work (Secondary Key composer) and

Find all the Recordings title “Violin Concerto”(Secondary key N title)

T X < < X

Requests can be rephrased as a Boolean “and” operation.

CO2 | L3




We begin by recognizing that this request can be rephrased as a
Boolean and operation, specifying the intersection of two subsets of the

data file:
Find 211 data records with:
composer = 'BEETHOVEN' and title = 'SYMPHONY NO. 9°

We begin our response to this regquest by searching the composer
index for the list of Label I2s that identify recordings with Beethoven as
the composer. This vields the following list of Label IDs:

ANG3795
DG139201
DcGieso’7
RCAZ626
M™Next we search the title index for the Label 1IDs associated with records
that have SYMPHONY NO. 9 as the title key:
ANG379S

COTL31809
DG1e807

Now we perform the Boolean arnd, which is a match operation,
combining the lists so only the members thar appear in borh lists are
placed in the output list.

Composers Titles Matched list
ANG2795 ——— ——  — ANG3T795 ———— ANG3795
DG1395201 coL31803 DG1E807
DG18BO7T—— —  DCE18807

RCAZEZ2G6
v Itis much easier to match in sorted list.
v Finally look up the addresses of the data file records.

v' Then records can be retrieved as:

ANG | 3795 | Symphony No. 9 | Beethoven Guilini
DG | 18807 | Symphony No. 9 | Beethoven Karajan
2. b | Write a C++ code to implement Secondary key. CO2 | L3
the record reference is a string
* secondaryKev, char * primaryKey) ;
har * secondaryXey); // return primary key
Leorndariy leesw 3rdes
1 . (; K \ { =1t
Lo AL | DR e koa to vead am Dindexed Hle
emplate < s RecType>
S condary (char * composer, SecondarylIndex index,
dFile<RecType> dataFile, RecType & rec)
zar * Key = index.Search (composer):
use primary key index to read file
return dataFile . Read (Key, rec);
Figure 7.;SearchOnSecondary: an algorithm to retrieve a single record from a recording
f
"lethrough a secondary key index.
CO2 | L2

3.a

Explain Class Heap and insert () a Heap function
v' The algorithm for heap sort has 2 parts.

v First we build the heap; and

v' Then we output the keys in sorted order.

class Heap{
public:
Heap(int maxElements);
int Insert (char* newKey);
char* Remove();
protected:

int MaxElements; int NumElernents;

char** HeapArray;

void Exchange(int i, int j); Il exchange elementiand j
int Compare (inti, int j) // compare element i and j

return stremp(HeapArray[i],HeapArray[j]) }/ returns -1, if left element is smaller




}

v Insert method that adds a string to the heap is shown.

int Heap::Insert (char * newKey)
{
if (NumElements == MaxElements) return FALSE;
NumElements++; // add the new key at the last position
HeapArray [NumElements] = newKey;
// re-order the heap
int k = NumElements; int parent;
while (k > 1) // k has a parent
{
parent = k / 2;
if (Compare(k, parent) >= 0) break;
// HeapArray(k] is in the right place-
// else exchange k and parent
Exchange (k, parent);
k = parent;
}

return TRUE;

3.b

What is tree? Explain how the Binary search tree used to reduces search time?

v B-trees are balanced search tree.

v More than 2 children are possible.

v B-Tree, stores all information in the leaves and stores only keys and Child pointer.
v" If an internal B-tree node x contains n[x] keys then x has n[x]+1 children.

v

Statement of the problem

v" Searching an index must be faster than binary searching.
v Inserting and deleting must be as fast as searching.

Searching:

»  The searching procedure is iterative, loading a page into memory and then searching
through the page, looking for the key at successively lower levels of the tree until it
reaches the leaf level.

»  They are iterative and they work in two stages, operating alternatively on entire pages and
then within pages.

Template <class keyType>
Int Btree<keyType>:: Search (const keyType key, const int recAddr)
{ BTreeNode<keyType> * leafNode;

leafNode = FindLeaf(key);

return leafNode->Search (key, recAddr);

b

Template <class keyType> BTreeNode<keyType> * Btree <keyType>::FindLeaf(const
keyTuype key)
{ int recAddr, level;

for (level = 1; level < Height; level++)

recAddr=Nodes[level-1]-Search(key, -1,0);
Nodes[level]=Fetch(recAddr);

Return Nodes[level-1];

b

CO2

L2




4. |Apply the concept of k-way merge and explain selection tree with example. 10 CO2 | L3
The K-way merge works nicely if K is no larger than 8 or so.
v Merging a larger number of lists, & finding the key becomes expensive.
v For practical reasons the use of sequential comparison is a good strategy.
v Ifthere is a need to merge more than 8 lists replace the loop of comparisons with a selection
tree (tournament tree).
7,10,17. . . List 0
el
/ TS~ g,19,23. . . List1
7
\ 11,13,32. . . List 2
ne"
TS~ 18,22,24. . . List$
44— Input ————5 .
12, 14,21 . . . List 4
» 5 / ’
/ \5, 6,25, . .List5
5
15, 20,30 . . . List 6
\ . / i
TS 5,16,29. . . List7
Figure 8.15 Use of a selection tree to assist in the selection of a key with
minimum value in a K-way merge.
5.a |Analyze the requirement of co-sequential model for implement General Ledger Program. 5 CO2 | L2

T < < X

v

1. Immediately after reading a new ledger object:

2. For each transaction object that matches, update the account balance.

3. After the last transaction for the account, the balance line should be printed.

Class CosequentialProcessing supports method Match

Class StringListProcess defines the supporting operations for lists.

To use class CosequentialProcessing create a sub class StringListProcess
Main members and methods of a general class for cosequential processing

There are 3 different steps in processing the ledger entries:

Print the header line and initialize the balance for next month from previous month's
balance.




1]
A
0
)

1
ih
n

ss emType>

ionProcess:
ialProcess<ItemType>
rocess that supports
on processing

Ve
o
0O n
ot
On
"

(4]

0

4
Hoo

mas

(L]
H
"

% U
W

erTransactionProcess ();//constructor
ual int ProcessNewMaster ()=0;
pProcessing when new master read

ual int ProcessCurrentMaster ()=0;

processing for each transaction for a master
virtual int ProcessEndMaster ()=0;

processing after all transactions for a master
virtual int ProcessTransactionError ()=0;

// no master for transaction

M
AN A

P

4
)

"
"

cosequential processing of master and transaction records
int PostTransactions (char * MasterFileName,
char * TransactionFileName,.char * OutputListName) ;

Figure 8.12 Class MasterTransactionProcess.

N

/VL(JV{ W s aeoss

while (MoreMasters || MoreTransactions)
if (Item(1l) < Item(2j){// finish this master rpcord s qu'ﬁ; Jto
ProcessEndMaster(); /¥me move [reuwsaclion 1n ’

2 3P | , XD
MoreMasters = NextItemInList (1); aﬂ"ffLLZA 3;« 4
if (M sters) ProcessNewMaster () ;" e o
sl gxﬁ&t&iﬁ)‘? P@»«K ikt /

ol olioelse 1f (Item(1) == Ttem(2)){ // transaction matches master
swl TG eccblate S ProcessCurrentMaster (); // another transaction f‘ozi_ ascerpw [
ProcessItem (2);// output transaction reccrd Aprink Uravsacks

MoreTransactions = NextItemInList (2); fotod masd” jauw-i 'O' .
}
else { // Item(l) > Item(2) transaction with no master

ProcessTransactionError(); //Mu..o.rg"..j qu\-w. ocwmi
MoreTransactions = NextItemInList (Z);

}

Figure 8.13 Three-way-test loop for method PostTransactions of class
MasterTransactionProcess.

int LedgerProcess::ProcessNewMaster ()

{// print the header and setup lasl: month’s balance
ledger.PrintHeader (OutputList) ;
ledger.Balances [MonthNumber) = ledger.Balances [MonthNumber-1];

int LedgerProcess::ProcessCurrentMaster ()

{// add the transaction amount to the balance for this month
ledger.Balances [MonthNumber] += journal .Amount ;

}

int LedgerProcess::ProcessEndMaster ()
{// print the balances line to output
PrintBalances (Outputlist,
ledger.Balances [MonthNumber-1],ledger.Balances [MonthNumber])) ;
}

Figure 8.14 Master record processing for ledger 6bjects.

5.b

What is Runs? Discuss the role runs in sorting large files.

v For large files whole file nor keys can be sorted in memory.

COo2

L2




The multiway merge algorithm provides solution to problem of sorting large files.
Create a sorted sub set of full file. This subfile is called run.

A multiway merge can be used to create a completely sorted file containing all the original
records.

v A schematic VIEW of this run creation and merging process is provided in Fig next.

800 000 unsorted records >

[

80 intermal sorts

ST

80 runs, each containing 10 000 sorted records

4 + v
[ e ] 1 ] [ I ]
I N
- —
|l—-‘r = 800 000 records in sorted order #{

Figure 8.21 Sorting through the creation of runs (sorted subfiles) and subsequent
merging of runs. ) :

Discuss about the inverted list to improve secondary index structure.
A First Attempt at a solution

v' Change the secondary index structure so it associates an array of references with each
secondary key.

BEETHOVEN ANG3795 DG139201 " DG18807 RCA2626

v' This helps in solving the problem of rearrange the secondary index file every time a new
record is added.

Revised composer index

Secondary key . Set of primary key references
BEETHOVEN ANG3795 DG139201 DG!BSOT RCA2626
COREA WAR23699
DVORAK COL31809
PROKOFIEV ~ LON2312
RIMSKY-KORSAKOYV ' MER?75016
SPRINGSTEEN COL38358
SWEET HONEY IN THE R FF245

/A Better Solution: Linking the List of References

v Files in which a secondary key leads to a set of one or more primary keys, are called
inverted lists.

v Here list refers to list of primary key references.

10

COo2

L2




Lists of primary
Secondary key index key references

BEETHOVEN L= | ANG3795
COREA - DG139201
DVORAK -1 DG18807
PROKOFIEV RCA2626

WAR23699

v Improved revision of the composer index with secondary index having 2 fields

v This new design result in a secondary key file for composers & an associated Label ID file
that are organized.

Secondary Index file Label ID List file
N 1
0 | BEETHOVEN 3 o | roNzsiz —1
1 RCAZ2626 —1
1 | corea 2 - :
. 2 WARZ23699 — 1
2 | DVORAK " 3 ANG3795 8
4 | coLs3s358 —1
3 { PROKOFIEV 10
‘ 5 DG18807 1
4 | RIMSKY-KORSAKOV R 6 MER75016 —1
7 | corsisos 1
5 | SPRINGSTEEN 4 -
8 | DG1335201 5
6 | SWEET HONEY IN THE R 9 9 FF245 —1
10 § ANG36193 o




