

Internal Assessment Test 2 – May 2023

QP SCHEME

Sub: File Structures
Sub

Code:
18IS61 Branch: ISE

Date: 23/05/2023 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI A, B & C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. Explain all the operations required to maintain an indexed file with class declarations.

 Operations Required to Maintain an Indexed File

 Create the original empty index and data files,

 Load the index file into memory before using it,

 Rewrite the index file from memory after using it,

 Add data records to the data file,

 Delete records from the data file,

 Update records in the data file,

 Update the index to reflect changes in the data file.

10 CO2 L2

2.a Explain the importance of secondary keys for searching and illustrate with suitable example

 Two or more Secondary key can be used to retrieve special subsets of records from the data

file.

 An example is illustrated in previous figure & one can respond to requests such as:

 Find the recording with Label ID COL37483 (Primary Key acess);

 Find all the recordings of Bethoven’s work (Secondary Key composer) and

 Find all the Recordings title “Violin Concerto”(Secondary key N title)

 Requests can be rephrased as a Boolean “and” operation.

5 CO2 L3

 It is much easier to match in sorted list.

 Finally look up the addresses of the data file records.

 Then records can be retrieved as:

2. b Write a C++ code to implement Secondary key.

5 CO2 L3

3.a Explain Class Heap and insert () a Heap function

 The algorithm for heap sort has 2 parts.

 First we build the heap; and

 Then we output the keys in sorted order.

class Heap{

 public:

 Heap(int maxElements);

 int Insert (char* newKey);

 char* Remove();

 protected:

 int MaxElements; int NumElernents;

 char** HeapArray;

 void Exchange(int i, int j); // exchange element i and j

 int Compare (inti, int j) // compare element i and j

 {

 return strcmp(HeapArray[i],HeapArray[j]) }// returns -1, if left element is smaller

5 CO2 L2

 } ;

 Insert method that adds a string to the heap is shown.

3.b What is tree? Explain how the Binary search tree used to reduces search time?

 B-trees are balanced search tree.

 More than 2 children are possible.

 B-Tree, stores all information in the leaves and stores only keys and Child pointer.

 If an internal B-tree node x contains n[x] keys then x has n[x]+1 children.



Statement of the problem

 Searching an index must be faster than binary searching.

 Inserting and deleting must be as fast as searching.

Searching:

 The searching procedure is iterative, loading a page into memory and then searching

through the page, looking for the key at successively lower levels of the tree until it
reaches the leaf level.

 They are iterative and they work in two stages, operating alternatively on entire pages and

then within pages.

Template <class keyType>

Int Btree<keyType>:: Search (const keyType key, const int recAddr)

{ BTreeNode<keyType> * leafNode;

 leafNode = FindLeaf(key);

 return leafNode->Search (key, recAddr);

}

Template <class keyType> BTreeNode<keyType> * Btree <keyType>::FindLeaf(const

keyTuype key)

{ int recAddr, level;

 for (level = 1; level < Height; level++)

 {

 recAddr=Nodes[level-1]-Search(key, -1,0);

 Nodes[level]=Fetch(recAddr);

 }

Return Nodes[level-1];

}

5 CO2 L2

4. Apply the concept of k-way merge and explain selection tree with example.

 The K-way merge works nicely if K is no larger than 8 or so.

 Merging a larger number of lists, & finding the key becomes expensive.

 For practical reasons the use of sequential comparison is a good strategy.

 If there is a need to merge more than 8 lists replace the loop of comparisons with a selection

tree (tournament tree).

10 CO2 L3

5.a Analyze the requirement of co-sequential model for implement General Ledger Program.

 Class CosequentialProcessing supports method Match

 Class StringListProcess defines the supporting operations for lists.

 To use class CosequentialProcessing create a sub class StringListProcess

 Main members and methods of a general class for cosequential processing

 There are 3 different steps in processing the ledger entries:

1. Immediately after reading a new ledger object:

 Print the header line and initialize the balance for next month from previous month's

balance.

2. For each transaction object that matches, update the account balance.

3. After the last transaction for the account, the balance line should be printed.

5 CO2 L2

5.b What is Runs? Discuss the role runs in sorting large files.

 For large files whole file nor keys can be sorted in memory.

5 CO2 L2

 The multiway merge algorithm provides solution to problem of sorting large files.

 Create a sorted sub set of full file. This subfile is called run.

 A multiway merge can be used to create a completely sorted file containing all the original

records.

 A schematic VIEW of this run creation and merging process is provided in Fig next.

6. Discuss about the inverted list to improve secondary index structure.

A First Attempt at a solution

 Change the secondary index structure so it associates an array of references with each

secondary key.

 This helps in solving the problem of rearrange the secondary index file every time a new

record is added.

A Better Solution: Linking the List of References

 Files in which a secondary key leads to a set of one or more primary keys, are called

inverted lists.

 Here list refers to list of primary key references.

10 CO2 L2

 Improved revision of the composer index with secondary index having 2 fields

 This new design result in a secondary key file for composers & an associated Label ID file

that are organized.

