USN

SEARS =
=Y -
=S

=

ACCREDITED WITH A+r GRADE BY MNAAS

¥

Internal Assessment Test 2 — MAY 2023

Scheme of Evaluation

Sub: | SOFTWARE TESTING Sub Code: | 181S62 Branch: | ISE
Date: | 23/05/2023 | Duration: | 90 min Max Marks: ‘50 Sem/Sec: VI/AB&C OBE
Answer any FIVE FULL Questions MARKs |CO (RBT
Explain McCabe's basis path testing for Triangle problem.
1. Program Triamngle
2. Dim a,. b,c As Integer
F. Dim IsTriangle As Boolean
g ODwutput [“"enter a.b, and o integers"")
S. Imput (a.b,c)
6. Output (“side 1 is”™, a)
. Output (“side 2 is™., b)
8. Output (Tside 3 is™.,)
9. If (a<b-+c) AND (b<a-+c) And (c<b+a)
0. themn IsTrianmngle = True
1. else IsTriangle = False
12 enrndif
13. IF IsTriangle
1 then if (a=b) AMND (b=c)
150 thern Output (““eguilateral’™)
16. else if (a 1= b)) AND (a '= b) AND (b '= c)
1 17 then Output [“Scalemne™) [10] |CO3L2
18 else Output (“Isosceles™)
19 erndif
20. erndif
2Z-1. else ODOutput (“Mmot a triangle™)
22 _ endif
23 . end TriangleZ2
MeCabe | Paths Expected
Results
Original | P1: First-A-B-C-E-F-H-J-K-RM-N-0- Scalene
Last
F[ip ri1 P2: First-A-B-D-E-F-H-J-EK-M-MN-- Infeasible
at B Last path
Flip F1 P3: First-A-B-C-E-F-G-O-Last Infeasible
at path
Flip P1 P4: First- A-B-C-E-F-H-I-IMN-O-Last Equilateral
at H
Flip F1 F5: First-A-B-C-E-F-H-J-L-M-MN-0O- Isosceles
at Last
Test Case a b Expected
Results
1 3 4 5 Scalene
2 4 -1 2 Mot a Triangle Pa
3 5 5 5 Equilateral P4
4 3 2 2 leosceles Ps

Write Second Try Decision Table for NextDate Problem.

=1: Fdontls i AAE Al ral AACE Pz Az Az PAZ

C2: ray in =1 (=5 3 =4 = (= [=E =

R.l.l-ll..' LTL,l.'I'I'll. 3 = = = e = 3 =

Aoc ey

@z Brraprcsss b balo =

A2 Drve raremeasriE olays . > 9 > >

A Fanmest ooy k4 =

mFz Imecrarrmermt rmoemth = 3 [05] COZ Ll

2(&) a5r Farsat areoerd by T

S Db rarETias et pesmr r

=1z Pelearsth Bm I‘u:“:l [t MU L B Y h.l'l._‘ MNUE M‘; M;

o2 [y e L=l L L= [E L [e -3

el .r-nunf T 1 L] 1 L] L] _l. _!

Aol iy

iz Bevaprersasibales = » =

s Brwc razeveesest ooy > o T

A% Ransent ol ¥ = =

=gz Drc rarsmiesen k. cmcrm kb = b = =

@aS: Rarmet srrucsratba

AACes D raseTiesrE presmr
Explain fault based testing.
Fault-based testing uses a fault model directly to hypothesize potential faults in a
program under test, as well as to create or evaluate test suites based on its efficacy in
detecting those hypothetical faults.

é Original proeram: The program unit (e.g., C function or Java class) to he tested.

= Propram location: A region in the source code. The precise definition is defined relative to the syntax of a particular 05 cozl L2
& programming lanpuape. Typical locations are statements, zrithmetic and Boolean expressions, and procedure calls. [05]
(b)

Alrernate expression: Source code text that can be legally substinuted for the text at a propram location. A substitution is legal if
the resulting propram is syntactically correct.

Alrernate propram A program obtained from the original program by substitutine an alternate expression for the text ar some
program location.

Distinct behaviour of an alternate program R for a test t The hehaviour of an alternate program R is distinet from the behaviour
of the orieinal propram P for a test t, if R and P produce a different result for ¢, or if the output of R is not defined for t.

For example, failure of the Tacoma Narrows Bridge in 1940 led to new
understanding of oscillation in high wind and to the introduction of analyses to
predict and prevent such destructive oscillation in subsequent bridge design. The
causes of an airline crash are likewise extensively studied, and when traced to
a structural failure they frequently result in a directive to apply diagnostic tests to all
aircraft considered potentially vulnerable to similar failures.

flow graph:

Apply Path testing Strategy and generate path testing coverage table for the given

Decisions Process-Link
Paths 2 5 d[e[f]g][n
123568 | T T v v v
9
(a-b-d-f-h-j)
1-2-4-5-7-8- F F v v
9
(a-c-e-g-i-j)
123578 | T F v v
9
(a-b-d-g-i-)
1-2-4-5-6-8- F T v v v
9
(a-c-e-f-h-j)

[10]

COo3

L3

Compute the following for the given source code:
A. Flow Graph
independent paths. D. Test Cases.

: program Example()
var staffDiscount,
staffDiscount = 0.1

> totalPrice,
3
«+ totalPrice
s

finalPrice, discount,

=0
input(price)
« while(price != -1) do
7 totalPrice = totalPrice + price
s input(price)

+ od
1o print("Total price: " + totalPrice)
12 if(totalPrice > 15.00) then

12 discount = (staffDiscount * totalPrice) + 0.50
s else

s discount = staffDiscount * totalPrice

15 fi

i« print("Discount: " + discount)

i finalPrice = totalPrice - discount

P1 (3. 12) = =3,
P2 (3. 14) = <3,

0, 11, 12> is definition clear
O, 11,12, 13, 14> is not definition clear

°
-

Aty 2 () i L
P3 (4, 7) =<4, 5, 6, 7> is definition clear
P4 (4, 10)=<=4_5 6.7, 8 9 10> is not definition clear
PS (7, 6) =<7, 8.9, 6> is definition clear
PG (7, 7) = <7, 8, 9, 6, 7> is not definition clear
P7 (7, 10) =<7, 8, 9, 6, 10> is definition clear
PR (7, 11) = <7,8,.9_6, 10, 11> is definition clear
PO (7, 12)=<7,8,9.6, 10, 11, 12> is definition clear
P10 (7, 14) = <7,.8,9,6, 10, 11, 12, 13, 14> is definition clear

pa inal price
P11 (17, 17)=<17, 17> is defimtion clear

D) | iscoun
16)=<12, 13, 14, 15, 16> 1s not definition clear
L17)==<12,13, 14 15, 16, 17> i1s not definition clear
P14 (12, 16)=<12, 13, 14_ 15, 16> 1s not definition clear
P1S (14, 16) = <14, 15, 16> is definition clear
P16 (14, 17)=<14, 15, 16, 17> is definition clear

P17 (S, 6) = <5, 6> is definition clear

PI8 (5, 7) =<5, 6, 7> is definition clear
P19 (8,6) = <8, 9, 6> is definition clear
P20 (8, 7) = <8, 9, 6, 7= is definition clear

The program graph for the example code

—

Cyclomatic Complexity :4

B. Cyclomatic Complexity C. Determine the basis set of]

price

[10]

Co3

L3

5 ()

Explain mutation analysis in testing.

Mutation analysis is the most common form of software fault-based
testing.

A fault model is used to produce hypothetical faulty programs by creating
variants of the program under test.

Variants are created by "seeding" faults, that is, by making a small change
to the program under test following a pattern in the fault model.

The patterns for changing program text are called mutation operators,
and each variant program is called a mutant.

Original program under test: The program or procedure (function) to be tested. Mutant A program differs the
original program for cne syntactic element (e.g., a statement, a condition, a variakle, a label).

Distinguished mutant A mutant that can be distinguished for the criginal program by executing at least one test

case.

Equivalent mutant A mutant that cannot be distinguished from the original program. Mutation operator A rule
for producing a mutant program by syntactically modifying the original program. Mutants should be plausible
as fau].t‘y programs. Mutant programs that are rejected b‘p a compiler, or that fail almest all tests, are not goocl
models of the faults we seek to uncover with systematic testing.

The mutation analysis process It can generate a number of

described in the preceding mutants quadratic in the size of Wil ey

for compiling all mutants and

sections, which kills mutants the program. Each mutant
based on the outputs produced must be compiled and executed
by execution of test cases, is with each test case until it is
known as strong mutation. killed.

for executing all test cases for
each mutant may be
impractical.

[05]

COo2

L2

(b)

Write Valid and Invalid Classes of Variables for Commission and NextDate Problem

= Intervals of valid values defined as follows:
Ml= {month : 1 <= month <=12}
D1 = {day : 1<=day <= 31}
Y1 = {year: 1812 == year <= 2012}

m Invalid Equivalence Classes
M2 = { month : month < 1}

M3 = { month : month = 12 }

D2 = {day:day <1}

D3 = {day: day = 31}

Y2 ={year: year < 1812}

Y3 = {year: year = 2012}

[05]

COo2

L1

The valid classes of the inpur variables are

L1 = {locks: 1 = locks = 70}

L2= {locks = —1} (occurs if locks = —1 is used o concrol inpurt iterarion)
Sl = {srocks: 1 = stocks = 80}

Bl = [barrels: 1 = barrels = 90}

The corresponding invalid classes of the inpur variables are

L3 = {locks: locks = 0 OR locks < -1}
L4 = {locks: locks = 70}

52 = {stocks: stocks < 1}

53 = {swocks: stocks = 80}

B2 = |barrels: barrels < 1}

B3 = {barrels: barrels = 90}

Write the source code of triangle problem in Fortran Style and compute DD path
graph, path testing for the same.

- Program Trianmngle
- Dirm o a, boo As Integer
- Dirm IsTriangle As Boolean

- ODwutput [enter a,. b, and c integers-7")
- Imput (a.b,c)

- Ouwutput (“side 1 Is™, a)

- Ouwutput (““side 2 isT, b))

- Output (Tside 3 IsT., o)

BNONh Wha

0

- I (a<bh-4c) AND (b<=a+c) SAunnd (c<b-+a)
10. thern IsTriamngle = True

11. elseae IsTriangle = Falsa

12Z. erndif

13- IF IsTriamngle

- themn if (as=bh) AND (bh=c)

15 thaern Output (“eguilateral’™)

16. else if (a I'= b)) AND (a !'= b)) AND (b I'= <)
17F- then Output { “Scalena™)

18 else Output (“lsoscelaes™)

19 e rndif

20 e rndif

21. else ODOutput (“"Nnot a trianmngle™)

22 emndif
23. end Triangle2

@ 4-5-6-7-8-9-10-12-13-21-22-23
@ 4-5-6-7-8-9-11-12-13-14-15-20-22-23
® 4-5-6-7-8-9-11-12-13-14-16-17-19-20-22-23
@ 4-5-6-7-8-9-11-12-13-14-16-18-19-20-22-23
Decision Test case
13 14 i b
@ T F 100 100 200 | Not A
triangle
@ F T T 100 100 100 | Equilateral
@ F T F T 100 50 60 Scalene
@ F T T F 100 100 50 Isosceles

[10]

COo3

L2

Path/node DD-path

code statement name Caso

Skip 1- 3

(or wid)

4 first 1

5-38 A 5

9 B 3

10 C . |

11 D 4

12 E 3

13 F 3

14 H 3

15 | 4

16 J 3

17 K 4

18 L - |

19 M 3

20 N 3

21 G 4

22 O 3 -

23 last 2

Faculty Signature

CCI Signature

HOD Signature

