CMR INSTITUTE OF TECHNOLOGY		USN Internal	Assess	sment	Test III	Septem	ber 2	023	*Chales	<u></u>	CMRIT	
Sub: Mathematical Foundations for Computing, Proability and Statistics Code:						21N	21MATCS41					
Date:	09/09/2023	Duration:	90 mins Max Marks: 50 Sem: IV Branch:							CSE/IS/AIML /AIDS		
Question 1 is compulsory and Answer any 6 from the remaining questions.								Marks	CO	BE RBT		
1 Define tautology. Determine whether the following compound statement is a tautology or not $\{(p \lor q) \to r\} \leftrightarrow \{\neg r \to \neg (p \lor q)\}$								[8]	CO1	L1,L3		
² Give direct proof and proof by contradiction for the statement "If <i>n</i> is an odd integer then n+9 is an even integer								[7]	CO1	L3		
3 F	Prove the logical equivalence $p \lor [p \land (p \lor q)] \equiv p$ without using truth table.							[7]	CO1	L3		

CMR INSTITUTE OF TECHNOLOGY			USN Internal Assessment Test III September 2023							a Chiniston	CMRIT			
Sub:	Sub: Mathematical Foundations for Computing, Proability and Statistics Code:						21MATCS41							
Date:	09/09/2023	Duration:	90 mins Max Marks: 50 Sem: IV Branch:						CSE/IS					
Question 1 is compulsory and Answer any 6 from the remaining questions.								Mark s	Mark OBE s CO RBT					
Define tautology. Determine whether the following compound statement is a tautology or no $\{(p \lor q) \to r\} \leftrightarrow \{\neg r \to \neg (p \lor q)\}$								[8]	CO1	L1,L3				
	Give direct proof and proof by contradiction for the statement "If n is an odd integer then $n+9$ is an even integer								[7]	CO1	L3			
3	Prove the logical eq	uivalence p	$p\vee[p\wedge($	$p \lor q)]$:	≡ <i>p</i> w	itho	out us	sing t	ruth 1	abl	le.	[7]	CO1	L3

4	Let $A = \{1, 2, 3, 4, 6\}$ and R be a relation on A defined by aRb if and only if "a is a multiple of b". Write down the relation R, relation matrix $M(R)$ and draw its digraph.	[7]	CO2	L3
	Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6\}$ i) How many functions are there from A to B? How many of these are one-to-one? How many are onto? ii) How many functions are there from B to A? How many of these are onto? How many are one-to-one	[7]	CO2	L3
	Define equivalence relation. $R=\{(1,1),(2,2),(3,3),(4,4)(1,2),(2,1),(3,4),(4,3)\}$ be a relation on A. Show that R is an equivalence relation	[7]	CO2	L1,L3
7	Draw the Hasse diagram representing the positive divisors of 36.	[7]	CO2	L3
	Define Graph isomorphism. Determine whether the following graphs are isomorphic or not.	[7]	CO2	L1,L3

4	Let $A = \{1, 2, 3, 4, 6\}$ and R be a relation on A defined by aRb if and only if "a is a multiple of b". Write down the relation R, relation matrix $M(R)$ and draw its digraph.			L3
	Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5, 6\}$ i) How many functions are there from A to B? How many of these are one-to-one? How many are onto? ii) How many functions are there from B to A? How many of these are onto? How many are one-to-one	[7]	CO2	L3
	Define equivalence relation. $R=\{(1,1),(2,2),(3,3),(4,4)(1,2),(2,1),(3,4),(4,3)\}$ be a relation on A. Show that R is an equivalence relation	[7]	CO2	L1,L3
7	Draw the Hasse diagram representing the positive divisors of 36.	[7]	CO2	L3
8	Define Graph isomorphism. Determine whether the following graphs are isomorphic or not.	[7]	CO2	L1,L3

Solh Tautology: A campound preposition which is true for all possible much values of its componend is known as Tautology. {(PV2) -> } } \ (-2-> ~ (PV2) } PV2 (PV2→r) ~2 9 P Ö 0 0 0 \bigcirc {(pva) → > } ←> {->- ~ (1 va)} $\sim 22 \rightarrow \sim (842)$ Here all the

1 a tautology

truth table

erst mer wedle stables : I') urven that

If n is an odd Integer then n+9 is an even itemer direct proof P: n is an odd integer nt9 is an even in typer. Hypothesis: let us assume that is odd integer in = 2K+1 for some integer K consequently Analysi's! n= 2K+1 nt9 = 2K+1+9 = 2K+10, it is almisible

by 2

1

-i n+9 is even interer

conclusion p-12 tre

proof by contradiction p: n is an odd integer q: n+9 is an even intoper SIT: P-19 is me P > 2 is false (let) Hypotheric: i.e. p is me and q is false a is false, then n+9 is odd 10 Analysi's! n+9 = 2K+1 n = 2K-8, which is divisible by 2 go n is even

Hence our assumption is wrong so p-12 is True

HIP

Soln PV (PN(PV2)) = P

TO Prove it:

By absorption |aw => PV [PN(PV2)] PV P

By Idimpotentian => PN(PN(PV2)) P

Hence proved

airen that A = {1,2,3,4,6} 80

R be a relation on A defined by arb if "a is multiple of b"

 $R = \{(1,1), (2,11), (3,1), (3,3), (2,2), (4,1)\}$ (412) (414) (611) (612) (613) (616) }

relation matrix m(R): 3 4 6 -0 100

Diagraph

A = {1,2,3,43 and B={1,2,3,4,5,6} Given function is mapped from A toB (i) No. of function: Every element of A has 6 choice to be mapped with element of B total no. of function = 6x6x6x6 = 1296 ONE-tO-ONE

we know that Every of element of A has unique image in B and every element of scal has unique preimage in A then it is one-to-one function

No. of elements in A = 7 = 4 RO No. of elements in B = 0 m = 6

No. of one-one function: 6c4 x 4!

onto function:

for anto function it IAILIBI then it never be onto

80 in given question

No of elements in A = 4

No of elements in B = 6

80 Here 1A12181 {4<6}

so Morg anto function = 0 / the

A= [1,2,3,4,6,6}

function mapped from 1 to A

one to ane function let function Mapped from A to B f: A -> B H 1A1>1B1 = one-to one no-of elements in B = 6 no-of elements in A = 4 function mapped from B-7A 80 1B/3/A/ so No. of one-to-one function = 0 me No of onto functions from B to A = p(n, m)- 2'(-1) n n (n-k) Where 1A1=n=4 18/= m = 6 = £' 4C4-k (-1) K (4-k) 6 = (4C4 ×1 × 4 6) + 4C3× (-1)×(4-1) +4C2×1×(4-2) +4C,×(-1)×16 + 4 Co CD (0) $= 1 \times 4^{6} + (4)(3^{6}) + 6 \times 2^{6} + 4(-1) \times 1$ = 4096 - 2916 +384 -4 (= 1560)

A Relation is said to be equivalence only when it is Reflexive, Symmetric and transitive. $R=\{(1,1)(2,2)(3,3),(4,4),(1,2)(2,1)$ (3,4) (4,3) } for Ref The elements present asc V1, 2, 3, 43 for Reflexive & there should be (aka) for each element of A !! (1,1),(2,2)(3,3) & (4,4) is present i. 9t is Reflexive. for Symmetric if alb (a,b) (b) is present then their emust be (b,a) present (1,2),(2,1) is present for (3,4), (4,3) is present . 9 t is Symmetric for transitive if (a, b) & (b, c) is present then there must be (a, c) present

1. tor(1,2) + (2,1), (1,1) is present for (3,4) 4 (4,3), (3,3) is present ... 9t is transitive also. Since given Relation R is Reflexive, Symmetrie 4 Transitive.

.. gt is an equivalence Relation.

Soln Hasse diagram representing the positive divisors Let A be set consisting of positive divisor of 16 A= {1,2,3,4,6,9,12,18,36}

1 R (all memembers of A)

2 K (2,416/12/18/36)

3R (3,6,9,112,118,36)

4R (4112136) 6R (6112118136) 9R (18136) 12R36; 18R36;

we take note of following sets

[1R2], [1R3] (12R36) (18R36) (9R18] (GR(12,18)) (UR12) [2R4] [3R\$(6112)]

Hasse &

Graph isomorpholim!

to Graphae sald to be isomorphic, it they have same no of vertices, Edges & same edges connectivity, I the process of determining Graph Homorphic is Known as Graph isomorphism

NO of vertices= a,b,c,d,e,f=6

Norg edges = ac, ec, ae, bd, fb, fd, ad, eb, fc = 9

Graph_edges Connectivity

ae = e1 let ec = e2 ae = e3 bd = e4 Ab = er fd = 66

ad = e7 eb = e8 fc= 29

No of verticer = U, V, X, Z,

No. of edges UV, VX, X7, 24, 76 yu, wy, wz, ux =9

> U1= 61 Let UX = 821 X = e2 zy = e4 yw = e+ yu = e6 W1 = 62 WZ = eg Un = e'9

f (a)(c) = UV E E' = e' er= ac EE VX EE! = e2! t(6) (c) = Cz = ec EE xz E E' = e31 f (a) (e) = ez = ae E E zy ∈ ∈1 = e41 1(p)(q) = ey = bd E E yw E E! = es! f(f)(b) = yu e = 1 = 26 er = fb E E f((f)(d) = e6 = fd E E WVEE = eg f(a)(d) = wz cel = egl ex = ade E f (e) (b) = es = eb E E 4x EE = eg' f(f)(c) = eg = -fc EE

More vertice, No. of Edges
No. of vertice, No. of Edges

L graph edge connectivity are same

L graph edge connectivity are same

L graph are isomorphic