Internal Assessment Test 3 — July 2023

QP SCHEME
Sub: | File Structures Sub Code: | 18IS61 Branch: ISE
Date: | 04/06/2023 | Duration: | 90 min’s | Max Marks: | 50 Sem/Sec: | VIA,B&C OBE
Answer any FIVE FULL Questions MARKS |CO |RBT
1. [Explain What is hashing?.Explain different hashing functions with example. 10 CO3| L2
What is Hashing?
v A Hash function is like a black box that produces an address every time a key is dropped.
v' The process of producing an address when a key is dropped to hash function is called Hashing
v Hash function is given by h(K) -- it transforms a key ‘K’ into an address.
v The resulting address is used to store and retrieve the record.
Square the key and take the mid (Mid Square Method):
This method involves:
v’ treating the key as single large number
v squaring the number and
v’ extracting whatever number of digits are required from the middle of the result.
For example:
v' Consider the key 453, its square is (453)2 = 205209.
v' Extracting the middle 2 digits yields a number 52 which is between 0 — 99.
Radix Transformation:
This method involves:
v' Converting the key from one base system to another base system.
v Then dividing the result with maximum address and taking the reminder.
For example:
v' If the hash address range is 0 — 99 and key is (453)11.
v' Converting this number to base 11 system results in (453)11=382.
v" Then 382 mod 99 = 85.
v So 85 is the hash address.
2.a |[Explain Use of Blocks 5 CO3| L2
USE Of BLOCKS
v Sorting entire file is expensive. So, localize it.
v One of the best ways is, to collect the records into blocks.
v Size of buffers used in a program, can hold an entire block.

S

Block 1 —‘ ADAMS . . . BAIRD . . . BIXBY . . . BOONE . . .

Elock 2 iEBYNUM..;CARSON...CDI_F....DAVIS...

Block 3 —bl DENVER . . . ELLIS

L

ta)

Block 1 ——{ ADAMS . . . BAIRD , . . BIXBY . . . BOONE , . . J

Block2 — P| BYNUM . .. CARSON . .. CARTER . . . i

Block 3 DENVER . . . ELLIS . . . I

Block 4 COLE . . . DAVIS . . . J

(bl

Block 1 —I ADAMS . .. BAIRD . . . BIXBY . . . BOONE . . . I

Block 2 :{ BYNUM . . . CARSON . . . CARTER . . . i
Block 3 [’ P—Avuilahlc
for reuse

|

Block 4 *br COLE . . . DENVER . . . ELLIS . . |

{e)

An example : To show how blocks keep a sequence set in order.

Suppose records are keyed on last name and

Collected together so there are 4 records in a block, and

Also link field is included in each block.

Insertion of new records into a block can cause the block to overflow.

The overflow condition can be handled by a block-splitting process.

X X X V VvV VY

Deletion of records can cause a block to be less than half full and therefore to underflow.
Underflow in B-Tree can lead to either of 2 solutions:

v" If a neighbouring node is also half full,

v' Merge the two nodes, freeing one for reuse.

v" If the neighbouring nodes are more than half full,

v

Redistribute records between the nodes to make distribution even

2.b

Explain Choice of block size.
Block is the basic for 1/0
Then, What is the block size?
Consideration regarding an upper bound for block size are as follows:
Consideration 1: The block size should be such that we can hold severe blocks in memory at once.

For example, in performing a block split or merging, we should be able to hold at least 2 blocks in

CO3

memory at a time.

L2

Consideration 2: Reading in or writing out a block should not take very long.

record.

Upper limit is placed on the block size so we would not end up reading entire file just to get at a single

Explain a B-Tree, the creation with examples.

v B-trees are balanced search tree.

v More than 2 children are possible.

v' B-Tree, stores all information in the leaves and stores only keys and Child pointer.
v If an internal B-tree node x contains n[x] keys then x has n[x]+1 children.
Statement of the problem

v Searching an index must be faster than binary searching.

v Inserting and deleting must be as fast as searching.

Construct a B — Tree of order 4, for the following set of keys

CSDTAMPIBWNGURKEHOLJYQZFXV

/
jons of C: S, D, T

St

ion of A causes node to split
::.;“‘;“Il:ngesl key in each leaf node
(Dmd‘!')lobe placed in the root

node.

c)Mmdeinsened intothe sl [
rightmost leaf node, then insertion <)
of 1 causes it to split.

d) Insertions of B, W, N, and G into
leaf nodes causes another split and
the root is now full.

¢) Insertion of U proceeds without
incident, but R would have 1o be
inserted into the rightmost leaf,
which is full.

Figure 9.14 Growth of a B-tree, part 1.The tree growsto a point at which the root needs
to be split the second time.

10

CO3

L2

Using an example explain the limitations of chained progressive overflow.

v It forms a linked list, or chain, of synonyms.

10

CO3

L3

Each home address contains a number indicating the location of the next record with the same
home address.

The next record in turn contains a pointer to the other record with the same home address.

This is shown in the figure below: In the figure below Admans contain the pointer to Cole which
is synonym.

Then Bates contain pointer to Dean which are again synonym. (Consider the below given Table

)

The figure below represents the chained progressive overflow technique.

Home addressfActual Address|RecordsjAddress of next Synonym|Search Length

19

20 20 Adams 22 1

21 21 Bates 1

20 22 Cole 25 2

21 23 Dean -1 2

24 24 Evans -1 1

20 25 Flint -1 3
26

Explain how Extendable hashing works.

v It combines conventional hashing with another retrieval approach called the trie.

v Tries are also sometimes referred to as radix searching.

In Tries:

v branching factor of the search tree = the number of alternative symbols that can occur in each
position of the key

v' Suppose we want to build a trie that stores the keys able, abrahms, adams, anderson, andrews,

and Baird.
A schematic form of the trie is shown in Fig.

The use-more-as-we-need-more capability is fundamental to the structure of extendible hashing.

10

CO3

L2

v Turning the Trie into a Directory

v’ Tries are used with a radix of 2 in our approach to extendible hashing:

v’ Search decisions are made on a bit-by-bit hasis.

v Here Tries work in terms of buckets containing keys.

Suppose we have:

v Bucket A containing keys that, when hashed, have hash addresses that begin with the bits 01.
v Bucket B contains keys with hash addresses beginning with 10 and

v Bucket C contains keys with addresses that start with 11.

Figure shows a trie that allows us to retrieve these.

6.a

\With a neat sketch, discuss simple prefix B+ Trees and its maintenance

Figure shows how seperators are used to form B-tree index of the sequence set blocks.
The B-tree index is called the index set.

With the sequence set, it forms a file structure called a simple prefix B+ tree.

A node containing N separators branches to N+ 1 children.

Simple Prefix- index set contains shortest Seperators.

T X <X X < X

Suppose search for record with KEY= EMBRY

Index
set

BO CAM | F FOLKS l

RNV

ADAM&HERNE) BOLEN-CAGE CAMP-DUTTON)] EMBRY-EVANS FABER-FOLK) FOLKS-GADDIS

/_

7 7 == 7 7
1 2 3 4 5 6

Figure 10.7 . A B-tree index set for the sequence set, forming a simple prefix B+ tree.

CO3

L2

Record insertion and deletion always take place in the sequence set.

If splitting, merging, or redistribution is necessary:

Perform the operation as if there were no index set at all.

If necessary, then make changes in the index set:

If blocks are split in the sequence set, a new separator must be inserted into the index set;

If blocks are merged in the sequence set, a separator must be removed from the index set; and

X X X X X VYV

If records are redistributed between blocks in the sequence set, the value of a separator must be
changed.

6.b

Give the structure of Indexed sequential access

v Indexed sequential file structures provide a choice between 2 alternative views of a file:
v Indexed: The File can be seen as a set of records that is indexed by key

v Sequential: The file can be accessed sequentially, returning records in order by key

v

B tree structure provides excellent indexed access to any individual record by key, even as records
are added and deleted.

Consider each block contains range of records.

v If we are looking for a record with the key BURNS, retrieve & inspect the 2nd block.

AY \ A AN hY
ADAM&BERNE) BOLEN-CAGE) CAMI’_—DUTTON) EMBRY-EVANS FA.BER—F‘OLK) FOLKS-GADDIS
7

7 7 7
1 2 3 4 5 6

Figure 10.2 Sequence of blocks showing the range of keys in each block.
v'ltiseasyto construct a simple, single- level index for these blocks.

for example, to build an index of fixed length records that contain the key for the last record in each
block, as shown in Fig.

Key Block number

BERNE
CAGE
DUTTON
EVANS
FOLK
GADDIS

O UL LN

Figure 10.3 Simple index for the sequence set illustrated in Fig. 10.2.

v/ The combination of this kind of index with the sequence set of blocks provide complete Indexed
sequential access.

CO3

L2

