

Internal Assessment Test 3 – July 2023 QP SCHEME

Sub:	File	Structures					Sub Code:	18IS61	Branch:	I	SE
Date:	0	4/06/2023	Duration:	90 min's	Max Marks:	50	Sem/Sec:	VI A, B & C			BE
Answer any FIVE FULL Questions 1. Explain What is bashing? Explain different bashing functions with example						MARKS 10	CO CO3	RBT L2			
1.	1. Explain What is hashing?.Explain different hashing functions with example.					10	203	LZ			
	What is Hashing?										
	✓ A Hash function is like a black box that produces an address every time a key is dropped.										
	The process of producing an address when a key is dropped to hash function is called Hashing										
	✓	Hash function	is given by h(I	ζ) it transf	forms a key 'K' ir	ito an	address.				
	✓	The resulting a	address is used	to store and	retrieve the recor	d.					
	Squa	re the key and	d take the mid	(Mid Squar	re Method):						
	This	method involv	es:								
	✓	treating the ke	ey as single larg	e number							
	✓	squaring the n	umber and								
	✓	extracting wha	atever number o	of digits are i	required from the	midd	le of the result.				
	For e	example:									
	✓	Consider the k	key 453, its squ	are is (453)2	= 205209.						
	✓	Extracting the	e middle 2 digits	s yields a nui	mber 52 which is	betwe	en 0 – 99.				
	Radi	x Transforma	ation:								
	This method involves:										
	✓	Converting the	e key from one	base system	to another base s	ystem					
	✓	Then dividing	the result with	maximum a	ddress and taking	the re	eminder.				
	For e	example:									
	✓	If the hash add	dress range is 0	– 99 and keg	y is (453)11.						
	✓	Converting thi	is number to ba	se 11 system	results in (453)1	1=382	2.				
	✓	Then 382 mod	1 99 = 85.								
	✓	So 85 is the ha	ash address.								
2.a	Expla	ain Use of Bloo	cks						5	CO3	L2
	USE Of BLOCKS										
	✓	Sorting entire	file is expensiv	re. So, localiz	ze it.						
	✓	One of the bes	st ways is, to co	llect the reco	ords into blocks.						
	✓	Size of buffers	s used in a prog	ram, can hol	d an entire block						
<u> </u>	<u> </u>								L	<u> </u>	

Consideration 2: Reading in or writing out a block should not take very long.			
Upper limit is placed on the block size so we would not end up reading entire file just to get at a single record.			
3. Explain a B-Tree, the creation with examples.	10	CO3	L2
✓ B-trees are balanced search tree.			
✓ More than 2 children are possible.			
✓ B-Tree, stores all information in the leaves and stores only keys and Child pointer.			
✓ If an internal B-tree node x contains $n[x]$ keys then x has $n[x]+1$ children.			
Statement of the problem			
✓ Searching an index must be faster than binary searching.			
✓ Inserting and deleting must be as fast as searching.			
Construct a B – Tree of order 4, for the following set of keys			
CSDTAMPIBWNGURKEHOLJYQZFXV			
a) Insertions of C, S, D, T into the initial node. b) Insertion of A causes node to split and the largest key in each leaf node (D and T) to be placed in the root node. c) M and P are inserted into the rightmost leaf node, then insertion of I causes it to split. A C D 1 M P 3 T 4 D M P W A B C D G I M M P W A B C D G I M M P W A B C D G I M M P W A B C D A B C D G I M M P W A B C D A B C D G I M M P W A B C D A B C D A B C D G I M M P W A B C D A B C D A B C D G I M M P W A B C D A B C D G I M M P W A B C D A B C D G I M M P W A B C D A B C D G I M M P W A B C D A B C D A B C D G I M M P W A B C D A B C D A B C D A B C D A B C D A B C D A B C D G I M M P W A B C D			
e) Insertion of U proceeds without incident, but R would have to be inserted into the rightmost leaf, which is full.			
ABCD GIM NP			
Figure 9.14 Growth of a B-tree, part 1. The tree grows to a point at which the root needs to be split the second time.			
 Using an example explain the limitations of chained progressive overflow. ✓ It forms a linked list, or chain, of synonyms. 	10	СОЗ	L3
, ,,			

CO3 L2

10

✓	Each home address contains a number indicating the location of the next record with the same	
	home address.	

- The next record in turn contains a pointer to the other record with the same home address.
- ✓ This is shown in the figure below: In the figure below Admans contain the pointer to Cole which is synonym.
- ✓ Then Bates contain pointer to Dean which are again synonym. (Consider the below given Table)
- ✓ The figure below represents the chained progressive overflow technique.

Home address	Actual Address	Records	Address of next Synonym	Search Length
	19		•	
20	20	Adams	22	1
21	21	Bates	23	1
20	22	Cole	25	2
21	23	Dean	-1	2
24	24	Evans	-1	1
20	25	Flint	-1	3
	26			•

5. Explain how Extendable hashing works.

- ✓ It combines conventional hashing with another retrieval approach called the trie.
- ✓ Tries are also sometimes referred to as radix searching.

In Tries:

- ✓ branching factor of the search tree = the number of alternative symbols that can occur in each position of the key
- Suppose we want to build a trie that stores the keys able, abrahms, adams, anderson, andrews, and Baird.
- ✓ A schematic form of the trie is shown in Fig.
- The use-more-as-we-need-more capability is fundamental to the structure of extendible hashing.

Turning the Trie into a Directory Tries are used with a radix of 2 in our approach to extendible hashing: Search decisions are made on a bit-by-bit basis. Here Tries work in terms of buckets containing keys. Suppose we have: Bucket A containing keys that, when hashed, have hash addresses that begin with the bits 01. Bucket B contains keys with hash addresses beginning with 10 and Bucket C contains keys with addresses that start with 11. Figure shows a trie that allows us to retrieve these. A ٤٤ C 6.a With a neat sketch, discuss simple prefix B+ Trees and its maintenance CO3 L2 Figure shows how seperators are used to form B-tree index of the sequence set blocks. The B-tree index is called the index set. With the sequence set, it forms a file structure called a simple prefix B+ tree. A node containing N separators branches to N+ 1 children. Simple Prefix- index set contains shortest Seperators. Suppose search for record with KEY= EMBRY Index FOLKS BOLEN-CAGE CAMP-DUTTON EMBRY-EVANS FABER-FOLK FOLKS-GADDIS Figure 10.7 A B-tree index set for the sequence set, forming a simple prefix B+ tree.

Record insertion and deletion always take place in the sequence set. If splitting, merging, or redistribution is necessary: Perform the operation as if there were no index set at all. If necessary, then make changes in the index set: If blocks are split in the sequence set, a new separator must be inserted into the index set; If blocks are merged in the sequence set, a separator must be removed from the index set; and If records are redistributed between blocks in the sequence set, the value of a separator must be changed. CO3 L2 6.b Give the structure of Indexed sequential access Indexed sequential file structures provide a choice between 2 alternative views of a file: Indexed: The File can be seen as a set of records that is indexed by key Sequential: The file can be accessed sequentially, returning records in order by key B tree structure provides excellent indexed access to any individual record by key, even as records are added and deleted. Consider each block contains range of records. If we are looking for a record with the key BURNS, retrieve & inspect the 2nd block. BOLEN-CAGE CAMP-DUTTON FABER-FOLK FOLKS-GADDIS ADAMS-BERNE EMBRY-EVANS 6 Figure 10.2 Sequence of blocks showing the range of keys in each block. It is easy to construct a simple, single-level index for these blocks. for example, to build an index of fixed length records that contain the key for the last record in each block, as shown in Fig. Block number 3 Figure 10.3 Simple index for the sequence set illustrated in Fig. 10.2. The combination of this kind of index with the sequence set of blocks provide complete Indexed

sequential access.