
US
N

Internal Assessment Test 3 – Set 2 – July 2023 – Answer Key
Sub: Cloud Computing and its Applications Sub Code: 18CS643 Branch ISE

Date: 05/07/2023 Duration: 90 min’s Max Marks: 50 Sem/Sec: VI / A and B OBE
Answer any FIVE questions MARKS CO RBT

1

a. What is a Map Reduce model?

MapReduce expresses the computational  logic  of an application in two simple
functions: map and reduce. Data transfer and management are completely handled
by the distributed storage infrastructure (i.e., the Google File System), which is in
charge of providing access to data, replicating files, and eventually moving them
where  needed.  the  MapReduce  model  is  expressed  in  the  form  of  the  two
functions, which are defined as follows:
The map function reads a key-value pair and produces a list of key-value pairs of
different types. The reduce function reads a pair composed of a key and a list of
values and produces a list of values of the same type. The types (k1,v1,k2,kv2)
used in the expression of the two functions provide hints as to how these two
functions  are  connected  and  are  executed  to  carry  out  the  computation  of  a
MapReduce job: The output of map tasks is aggregated together by grouping the
values according to their corresponding keys and constitutes the input of reduce
tasks that, for each of the keys found, reduces the list of attached values to a single
value.  Therefore,  the  input  of  a  MapReduce  computation  is  expressed  as  a
collection of key-value pairs < k1,v1 >, and the final output is represented by a list
of values: list(v2).

b. Explain the Map Reduce computation workflow with a neat diagram.

Figure 8.5 depicts a reference workflow characterizing MapReduce computations.
As shown, the user submits a collection of files that are expressed in the form of a
list of < k1,v1 > pairs and specifies the map and reduce functions. These files are
entered into the distributed file system that supports MapReduce and, if necessary,
partitioned in order to be the input of map tasks. Map tasks generate intermediate
files that store collections of< k2, list(v2) > pairs, and these files are saved into the
distributed  file  system.  These  files  constitute  the input  of  reduce  tasks,  which
finally produce output files in the form of list(v2).

3
7

CO2 L2



The computation  model  expressed  by MapReduce is  very  straightforward  and
allows  greater  productivity  for  people  who  have  to  code  the  algorithms  for
processing  huge  quantities  of  data.  In  general,  any  computation  that  can  be
expressed  in  the  form  of  two  major  stages  can  be  represented  in  terms  of
MapReduce computation.
These stages are:
1. Analysis. This phase operates directly on the data input file and corresponds to
the operation performed by the map task. Moreover, the computation at this stage
is expected to be embarrassingly parallel, since map tasks are executed without
any sequencing or ordering.
2.  Aggregation.  This  phase  operates  on  the  intermediate  results  and  is
characterized  by  operations  that  are  aimed  at  aggregating,  summing,  and/or
elaborating the data obtained at the previous stage to present the data in their final
form.  This  is  the  task  performed  by the  reduce  function.  Figure  given  below
shows a more complete overview of a MapReduce infrastructure, according to the
implementation proposed by Google. s depicted, the user submits the execution of
MapReduce jobs by using the client libraries that are in charge of submitting the
input data files, registering the map and reduce functions, and returning control to
the user once the job is completed.  A generic  distributed infrastructure (i.e.,  a
cluster) equipped with job-scheduling capabilities and distributed storage can be
used to run MapReduce applications.
Two different kinds of processes are run on the distributed infrastructure:
a master process and
a worker process.
The master process is in charge of controlling the execution of map and reduce
tasks, partitioning, and reorganizing the intermediate output produced by the map
task in order to feed the reduce tasks. The master process generates the map tasks
and assigns input splits to each of them by balancing the load.
The worker processes are used to host the execution of map and reduce tasks and
provide basic I/O facilities that are used to interface the map and reduce tasks with
input and output files.



2

a. What is the Azure model?

Microsoft  Windows  Azure  is  a  cloud  operating  system built  on  top  of
Microsoft datacenters’ infrastructure and provides developers with a collection of
services  for  building  applications  with  cloud technology.  Services  range from
compute, storage, and networking to application connectivity, access control, and
business intelligence.

Figure  9.3  provides  an  overview of  services  provided by Azure.  These
services  can  be  managed  and  controlled  through  the  Windows  Azure
Management Portal, which acts as an administrative console for all the services.

b. Describe the relationship between a process and a thread.

A  thread  identifies  a  single  control  flow,  which  is  a  logical  sequence  of
instructions,  within a  process.  By logical  sequence of instructions,  we mean a
sequence of  instructions  that  have been designed to be executed  one after  the
other one. Operating systems that support multithreading identify threads as the
minimal building blocks for expressing running code. Each process contains at
least  one  thread  but,  in  several  cases,  is  composed  of  many  threads  having
variable lifetimes. Threads within the same process share the memory space and
the execution context. In a multitasking environment the operating system assigns
different time slices to each process and interleaves their execution. The process
of temporarily stopping the execution of one process, saving all the information in
the registers, and replacing it with the information related to another process is
known as a context switch.

3
7

CO3 L2



Figure 6.2 provides an overview of the relation between threads and processes and
a  simplified  representation  of  the  runtime  execution  of  a  multithreaded
application. A running program is identified by a process, which contains at least
one thread, also called the main thread. Such a thread is implicitly created by the
compiler or the runtime environment executing the program. This thread is likely
to last for the entire lifetime of the process and be the origin of other threads,
which in general exhibit a shorter duration. As main threads, these threads can
spawn other threads. There is no difference between the main thread and other
threads created during the process lifetime. Each of them has its own local storage
and a sequence of instructions to execute, and they all share the memory space
allocated  for  the  entire  process.  The  execution  of  the  process  is  considered
terminated when all the threads are completed.

3 a. What are the domains for the application of Cloud Computing?

Cloud computing has gained huge popularity in industry due to its ability to host
applications  for  which  the  services  can  be  delivered  to  consumers  rapidly  at
minimal cost. This section discusses some application case studies, detailing their
architecture and how they leveraged various cloud technologies.
Applications from a range of domains, from scientific to engineering, gaming, and
social networking have cloud computing as their foundation.

Scientific applications
Healthcare: ECG analysis in the cloud
Biology: protein structure prediction
Biology: gene expression data analysis for cancer diagnosis
Geoscience: satellite image processing
Business and consumer applications
CRM and ERP

3
7

CO3 L2



1 Salesforce.com
2 Microsoft dynamics CRM 3 NetSuite
Productivity
1 Dropbox and iCloud 2 Google docs
3 Cloud desktops: EyeOS and XIOS/3
Social networking 1 Facebook
Media applications 1 Animoto
2 Maya rendering with Aneka
3 Video encoding on the cloud: Encoding.com
Multiplayer online gaming

b.  Describe  how  Cloud  Computing  can  be  applied  to  online  gaming  with  a
required diagram.

Online  multiplayer  gaming  attracts  millions  of  gamers  around  the  world  who
share  a  common experience  by playing together  in  a  virtual  environment  that
extends beyond the boundaries of a normal LAN. Online games support hundreds
of players in the same session, made possible by the specific architecture used to
forward interactions, which is based on game log processing.
Players update the game server hosting the game session, and the server integrates
all the updates into a log that is made available to all the players through a TCP
port.  The client  software  used  for  the  game connects  to  the  log  port  and,  by
reading the log, updates the local user interface with the actions of other players.

Game log processing is also utilized to build statistics on players and rank them.
These features constitute the additional value of online gaming portals that attract
more and more gamers. The processing of game logs is a potentially compute-
intensive operation that strongly depends on the number of players online and the
number of games monitored.
The use of cloud computing technologies can provide the required elasticity for
seamlessly processing these workloads and scale as required when the number of



users increases. A prototype implementation of cloud-based game log processing
has been implemented by Titan Inc. (Figure 10.10).

4

a. What is the need for Azure Dynamo?

The  main  goal  of  Dynamo is  to  provide  an  incrementally  scalable  and
highly  available  storage  system.  This  goal  helps  in  achieving  reliability  at  a
massive  scale,  where  thousands  of  servers  and  network  components  build  an
infrastructure serving 10 million requests per day. Dynamo provides a simplified
interface based on get/put semantics, where objects are stored and retrieved with a
unique identifier (key).

b. Explain the Azure Dynamo architecture with a neat diagram.

The architecture of the Dynamo system, shown in Figure 8.3, is composed
of a collection of storage peers organized in a ring that shares the key space for a
given application. The key space is partitioned among the storage peers, and the
keys  are  replicated  across  the  ring,  avoiding  adjacent  peers.  Each  peer  is
configured  with  access  to  a  local  storage  facility  where  original  objects  and
replicas are stored.
Each node provides facilities for distributing the updates among the rings and to
detect failures and unreachable nodes.

3
7

CO3 L2

5 a. What is Data Intensive Computing?

Data-intensive computing  is concerned with  production, manipulation, and
analysis  of  large-scale data  in the range of hundreds of  megabytes (MB) to
petabytes (PB) and beyond. 
Dataset is commonly used to identify a collection of information elements that is
relevant  to  one  or  more  applications.  Datasets  are  often  maintained  in
repositories,  which  are  infrastructures  supporting  the  storage,  retrieval,  and
indexing of large amounts of information. 

3
7

CO3 L3



To  facilitate  classification  and  search,  relevant  bits  of  information,  called
metadata, are attached to datasets. Data-intensive computations occur in many
application domains. 
Computational  science  is  one  of  the  most  popular  ones.  People  conducting
scientific simulations and experiments are often keen to produce, analyze, and
process huge volumes of data. Hundreds of gigabytes of data are produced every
second by telescopes mapping the sky; the collection of images of the sky easily
reaches the scale of petabytes over a year. 
Bioinformatics  applications  mine  databases  that  may  end  up  containing
terabytes of data. 
Earthquake simulators process a massive amount of data, which is produced as
a result of recording the vibrations of the Earth across the entire globe.

b. Articulate the characteristics of Data Intensive Computing.

Characterizing data-intensive computations 
Challenges ahead 

Historical perspective 
1 The early age: high-speed wide-area networking 2 Data grids 
3 Data clouds and “Big Data” 
4 Databases and data-intensive computing 

Characterizing data-intensive computations 
Data-intensive applications dealS with huge volumes of data, also exhibit compute-
intensive properties. Figure 8.1 identifies the domain of data-intensive computing in
the two upper quadrants of the graph. Data-intensive applications handle datasets on
the scale of multiple terabytes and petabytes.



6 a. What is the need for Google AppEngine?

An  Engine  is  a  fully  managed,  serverless  platform  for  developing  and
hosting  web  applications  at  scale.  You  can  choose  from  several  popular
languages,  libraries,  and frameworks  to  develop  your  apps,  and then  let  App
Engine take care of provisioning servers and scaling your app instances based on
demand. Google App Engine lets app developers build scalable web and mobile
back ends in any programming language on a fully managed serverless platform.

b. With a neat diagram, sketch and explain the architecture of Google AppEngine
platform.

Google AppEngine is a PaaS implementation
Distributed  and  scalable  runtime  environment  that  leverages  Google’s  distributed
infrastructure to scale out applications. 
Architecture and core concepts 
AppEngine is a platform for developing scalable applications accessible through the
Web. Figure 9.2. 
The  platform is  logically  divided  into  four  major  components:  infrastructure,  the
runtime environment, the underlying storage, and the set of scalable services.

1 Infrastructure 
AppEngine  hosts  Web applications,  and its  primary  function  is  to  serve users
requests efficiently. 
AppEngine’s  infrastructure  takes  advantage  of  many  servers  available  within
Google  datacenters.  For  each  HTTP  request,  AppEngine  locates  the  servers
hosting  the application  that  processes  the request,  evaluates  their  load,  and,  if
necessary,  allocates  additional  resources or redirects  the request to an existing
server. 
The infrastructure is also responsible for monitoring application performance and
collecting statistics on which the billing is calculated.

2 Runtime environment 
The runtime environment represents the execution context of applications hosted
on AppEngine. 
Sandboxing- One of the major responsibilities of the runtime environment is to
provide the application  environment  with an  isolated  and protected  context  in

3
7

CO2 L3



which it  can execute without causing a threat  to the server and without  being
influenced by other applications. In other words, it provides applications with a
sandbox. 
If  an  application  tries  to  perform any operation  that  is  considered  potentially
harmful, an exception is thrown and the execution is interrupted. 
Supported runtimes- Currently, it is possible to develop AppEngine applications
using three different languages and related technologies: Java, Python, and Go. 
AppEngine currently supports Java 6, and developers can use the common tools
for Web application development in Java, such as the Java Server Pages (JSP),
and  the  applications  interact  with  the  environment  by  using  the  Java  Servlet
standard. 
Support for Python is provided by an optimized Python 2.5.2 interpreter. As with
Java, the runtime environment supports the Python standard library. 
Developers can use a specific Python Web application framework, called webapp,
simplifying the development of Web applications. 
The  Go  runtime  environment  allows  applications  developed  with  the  Go
programming language to be hosted and executed in AppEngine. Currently the
release of Go that is supported by AppEngine is r58.1. The SDK includes the
compiler  and  the  standard  libraries  for  developing  applications  in  Go  and
interfacing it with AppEngine services.

3 Storage 
AppEngine provides various types of storage, which operate differently depending
on the volatility of the data. Static file servers- Web applications are composed of
dynamic and static data. Dynamic data are a result of the logic of the application
and the interaction with the user. Static data often are mostly constituted of the
components that define the graphical layout of the application or data files. 
DataStore- DataStore is a service that allows developers to store semi-structured
data.  The  service  is  designed  to  scale  and  optimized  to  quickly  access  data.
DataStore can be considered as a large object database in which to store objects that
can be retrieved by a specified key. 
DataStore imposes less constraint on the regularity of the data but, at the same time,
does not implement some of the features of the relational model. 
The  underlying  infrastructure  of  DataStore  is  based  on  Bigtable,  a  redundant,
distributed, and semistructured data store that organizes data in the form of tables. 
DataStore  provides  high-level  abstractions  that  simplify  interaction  with  Bigtable.
Developers define their data in terms of entity and properties, and these are persisted
and maintained by the service into tables in Bigtable. 
DataStore  also provides facilities  for creating indexes on data and to update data
within the context of a transaction. Indexes are used to support and speed up queries.
A query can return zero or more objects of the same kind or simply the corresponding
keys.

4 Application services 
Applications hosted on AppEngine take the most from the services made available
through  the  runtime  environment.  These  services  simplify  most  of  the  common
operations  that  are  performed  in  Web  applications  UrlFetch  -  The  sandbox
environment  does  not  allow  applications  to  open  arbitrary  connections  through
sockets,  but  it  does provide developers  with the capability  of retrieving a remote
resource through HTTP/HTTPS by means of the UrlFetch service. Applications can
make  synchronous  and  asynchronous  Web  requests  and  integrate  the  resources
obtained in this way into the normal request- handling cycle of the application. 
UrlFetch is not only used to integrate meshes into a Web page but also to leverage
remote Web services in accordance with the SOA reference model for distributed



applications. 
MemCache- This is a distributed in-memory cache that is optimized for fast access
and  provides  developers  with  a  volatile  store  for  the  objects  that  are  frequently
accessed.  The  caching  algorithm  implemented  by  MemCache  will  automatically
remove the objects that are rarely accessed. The use of MemCache can significantly
reduce the access time to data; developers can structure their applications so that each
object is first looked up into MemCache and if there is a miss, it will be retrieved
from DataStore and put into the cache for future lookups. 
Mail  and instant  messaging-  AppEngine provides developers  with  the ability  to
send and receive mails through Mail. The service allows sending email on behalf of
the application to specific user accounts. It is also possible to include several types of
attachments and to target multiple recipients. 
AppEngine provides also another way to communicate with the external world: the
Extensible Messaging and Presence Protocol (XMPP). Any chat service that supports
XMPP, such as Google Talk, can send and receive chat messages to and from the
Web application, which is identified by its own address. 
Account  management-  AppEngine  simplifies  account  management  by  allowing
developers to leverage Google account management by means of Google Accounts. 
Using Google Accounts, Web applications can conveniently store profile settings in
the form of key-value pairs,  attach them to a  given Google account,  and quickly
retrieve them once the user authenticates.

5 Compute services 
AppEngine  offers  additional  services  such  as  Task  Queues  and  Cron  Jobs  that
simplify the execution of computations. 
Task queues-  A task is defined by a Web request to a given URL, and the queue
invokes the request handler by passing the payload as part of the Web request to the
handler. It is the responsibility of the request handler to perform the “task execution,”
which is seen from the queue as a simple Web request. 
Cron jobs- the required operation needs to be performed at a specific time of the day,
which does not coincide with the time of the Web request. In this case, it is possible
to schedule the required operation at the desired time by using the Cron Jobs service.


