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What is Baye’s Theorem? Explain how it is
a) e .
used for classification with example? 2M
I Bayes Theorem M 10M 10M
Example 4M
Explanation
a) Explain with example, how to build decision
tree using Hunt’s algorithm AM
9 Algorithm Pseudo code 3IM 10M 10M
Explanation 3IM
Example
a) Explain the measures for selecting the best split
with example M
3 Entropy M 6M
Gini Index M
Classification error
b) Explain characteristics of decision tree 10M
induction
Any 4 characteristics
3 IM*4 4M




With example, explain Agglomerative
Hierarchical Clustering with example.

Agglomerative clustering algorithm IM
Explanation ™M 10M 10M
Example + Diagram + clusters M
2) With time and space complexity, explain
DBSCAN clustering algorithm.
DBSCAN algorithm pseudo code
Explanation
Example +diagram + clusters
3M
2M 10M 10M
M
a) Apply K-Means clustering algorithm on the
following dataset for two clusters (K=2).
X Y
1 185 72
2 170 56
3 168 60 2M
4 179 68
5 132 7 2M 10M 10M
6 188 77 6M

Euclidean distance
Distance matrix
Cluster s after every iteration
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1. What is Baye’s Theorem? Explain how it is used for classification with example?

o Naive Bayes algorithm is a supervised learning algorithm, which is based on Bayes
theorem and used for solving classification problems.

o It i1s mainly used in fext classification that includes a high-dimensional training
dataset.

o Naive Bayes Classifier is one of the simple and most effective Classification
algorithms which helps in building the fast machine learning models that can make
quick predictions.

o It is a probabilistic classifier, which means it predicts on the basis of the
probability of an object.

o Some popular examples of Naive Bayes Algorithm are spam filtration, Sentimental
analysis, and classifying articles.

o Bayes' theorem is also known as Bayes' Rule or Bayes' law, which is used to determine
the probability of a hypothesis with prior knowledge. It depends on the conditional
probability.

o The formula for Bayes' theorem is given as:

Where,

P(A|B) is Posterior probability: Probability of hypothesis A on the observed event B.

P(B|A) is Likelihood probability: Probability of the evidence given that the probability of a
hypothesis is true.

P(A) is Prior Probability: Probability of hypothesis before observing the evidence.




P(B) is Marginal Probability: Probability of Evidence.

Working of Naive Bayes' Classifier:
Working of Naive Bayes' Classifier can be understood with the help of the below example:
Suppose we have a dataset of weather conditions and corresponding target variable "Play". So

using this dataset we need to decide that whether we should play or not on a particular day
according to the weather conditions. So to solve this problem, we need to follow the below steps:

1. Convert the given dataset into frequency tables.
2. Generate Likelihood table by finding the probabilities of given features.

3. Now, use Bayes theorem to calculate the posterior probability.
Problem: If the weather is sunny, then the Player should play or not?

Solution: To solve this, first consider the below dataset:

Outlook Play

0 Rainy Yes
1 Sunny Yes
2 Overcast Yes
3 Overcast Yes
4 Sunny No

5 Rainy Yes
6 Sunny Yes
7 Overcast Yes
8 Rainy No

9 Sunny No

10 Sunny Yes

11 Rainy No



12 Overcast

13 Overcast

Frequency table for the Weather Conditions:

Weather Yes
Overcast 5
Rainy 2
Sunny 3
Total 10

Likelihood table weather condition:

Weather No Yes
Overcast 0 5

Rainy 2 2

Sunny 2 3

All 4/14=0.29 10/14=0.71
Applying Bayes'theorem:

P(Yes|Sunny)= P(Sunny|Yes)*P(Yes)/P(Sunny)
P(Sunny|Yes)=3/10= 0.3

P(Sunny)=0.35

P(Yes)=0.71

So P(Yes|Sunny) = 0.3*0.71/0.35= 0.60
P(No|Sunny)= P(Sunny|No)*P(No)/P(Sunny)

P(Sunny|NO)= 2/4=0.5

Yes

Yes

No

5/14=0.35

4/14=0.29

5/14=0.35



P(No)=0.29

P(Sunny)=0.35

So P(No|Sunny)= 0.5%0.29/0.35 = 0.41

So as we can see from the above calculation that P(Yes|Sunny)>P(No|Sunny)
Hence on a Sunny day, Player can play the game.

2. Explain with example, how to build decision tree using Hunt’s algorithm.
Hunt’s Algorithm

In Hunt’s algorithm, a decision tree is grown in a recursive fashion by parti-
tioning the training records into successively purer subsets. Let D; be the set
of training records that are associated with node t and y = {y1,¥2,--., ¥} be
the class labels. The following is a recursive definition of Hunt’s algorithm.

Step 1: If all the records in D; belong to the same class y;, then t is a leaf
node labeled as ;.

Step 2: If D; contains records that belong to more than one class, an at-
tribute test condition is selected to partition the records into smaller
subsets. A child node is created for each outcome of the test condi-
tion and the records in D, are distributed to the children based on the
outcomes. The algorithm is then recursively applied to each child node.

)
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Home Marital Annual Defaulted
Owner Status Income Borrower

Figure 4.6. Training set for predicting borrowers who will default on loan payments.



e To illustrate how the algorithm works, consider the problem of predicting whether a loan
applicant will repay her loan obligations or become delinquent. subsequently defaulting on her
loan.

e A training set for this problem can be constructed by examining the records of previous
borrowers.

¢ In the example shown in Figure 4.6, each record contains the personal information of a borrower
along with a class label indicating whether the borrower has defaulted on loan payments.

e The inifial tree for the classification problem contains a single node with class label
Defaulted = No (see Figure4.7(a), which means that most of the borrowers successfully repaid
their loans.

e The tree, however, needs to be refined since the root node contains records from both
classes. The records are subsequently divided into smaller subsets based on the outcomes of
the Home Owner test condition, as shown in Figure 4.7(b).

The justification for choosing this attribute test condition will be discussed later.

For now, we will assume that this is the best criterion for splitting the data at this point.

Hunt's algorithm is then applied recursively to each child of the root node.

From the training set given in Figure 4.6, notice that all borrowers who are home owners
successfully repaid their loans.

e The lett child of the root is therefore a leaf node labeled Defaulted = No (see Figure 4.7(b)).

e For the right child, we need to continue applying the recursive step of Hunt's algorithm until all

the records belong to the same class. The trees resulting from each recursive step are shown in
Figures 4.7(c) and (d).

Home
Owner

Yes No

Defaulted = No 2

Defaulted = No Defaulted = No

(a) (b)

ﬂiome Defaulted = No ¢ Marital
Owner Status
Y Single, Married
- 2o Divorced
J Defaulted = No Defaulted = No
Single, Married <80 >= 80K
Divorced /
Defaulted = Yes Defaulted = No Defaulted = No Defaulted = Yes

(c) (d)
Figure 4.7. Hunt's algorithm for inducing decision trees.

3. Explain the measures for selecting the best split with example



Measures for Selecting the Best Split
There are many measures that can be used to determine the best way to split
the records. These measures are defined in terms of the class distribution of
the records before and after splitting.

Let p(i|t) denote the fraction of records belonging to class i at a given node
t. We sometimes omit the reference to node t and express the fraction as p;.
In a two-class problem, the class distribution at any node can be written as
(po, p1), where p; = 1 — pg. To illustrate, consider the test conditions shown
in Figure 4.12. The class distribution before splitting is (0.5,0.5) because
there are an equal number of records from each class. If we split the data
using the Gender attribute, then the class distributions of the child nodes are
(0.6,0.4) and (0.4, 0.6), respectively. Although the classes are no longer evenly
distributed, the child nodes still contain records from both classes. Splitting
on the second attribute, Car Type, will result in purer partitions.

The measures developed for selecting the best split are often based on the
degree of impurity of the child nodes. The smaller the degree of impurity, the
more skewed the class distribution. For example, a node with class distribu-
tion (0,1) has zero impurity, whereas a node with uniform class distribution
(0.5,0.5) has the highest impurity. Examples of impurity measures include

e Greedy approach:

— Nodes with homogeneous class distribution
are preferred

» Need a measure of node impurity:

Co: 5 C0:9
C1:5 C1:1
Non-hemogeneous, Homogeneous,

High degree of impurity Low degree of impurity



The measures developed for selecting the best split are clten based on the
degree of impurity of the child nodes. The smaller the degree of impurity, the
more skewed the class distribution. For example, a node with class distribu-
tion (0, 1) has zero impurity, whereas a node with uniform class distribution
(0.5,0.5) has the highest impurity. Examples of impurity measures include

c—1
Entropy(t) = — > p(ilt)logs p(ilt), (4.3)
=0
c—1
Gini(t) = 1-> [p(ilt)]? (4.4)
i=0
Classification error(t) = 1 — max[p(i|t)], (4.5)
T

where ¢ is the number of classes and 0logy 0 = 0 in entropy calculations.

Figure 4.13 compares the values of the impurity measures for binary classi-
fication problems. p refers to the fraction of records that belong to one of the
two classes. Observe that all three measures attain their maximum value when
the class distribution is uniform (i.e., when p = 0.5). The minimum vahues for
the measures are attained when all the records belong to the same class (i.e.,
when p equals 0 or 1). We next provide several examples of computing the
different impurity measures.

Node vy | Count
Class=0 0
Class=1 6
Node No | Count
(lass=0 1
Clasg=1 5
Node Ng | Count
Class=0 3
Clags=1 3 |

Gini = 1 — (0/6)2 — (6/6)2 = 0
Entropy = —(0/6)log,(0/6) — (6/6) log,(6/6) = 0
Error = 1 — max[0/6,6/6] =0

Gini = 1 — (1/6)? — (5/6)%2 = 0.278
Entropy = —(1/6)1og,(1,/6) — (5/6) log,[5/6) = 0.650
Error = 1 — max[1/6,5/6] = 0.167

Gini = 1 — (3/6)2 ~ (3/6)2 = 0.5
Entropy = —(3/6)log,(3/6) — (3/6) log,(3/6) = 1
Error = 1 — max{[3/6,3/6] = 0.5

3 b) Explain characteristics of decision tree induction.



Characteristics of Decision Tree Based Classification:

Advantages :

¢ Decision tree induction is a nonparametric approach for building classification models. In other
words, it does not require any prior assumptions regarding the type of probability distributions
satisfied by the class and other attributes.

+ Finding an optimal decision tree is an NP-complete problem

* Techniques developed for constructing decision trees are computationally inexpensive. making it
possible to quickly construct models even when the training set size is very large. Once a decision
tree has been built. classifying a test record is extremely fast. with a worst-case complexity of O(W),
where .\W 1s the maximum depth of the tree.

+ Decision trees. especially smaller-sized trees. are relatively easy to interpret.
Decision tree algorithms are quite robust to the presence of noise.

* The presence of redundant attributes does not adversely affect the accuracy of decision trees.

4. With example, explain Agglomerative Hierarchical Clustering with example.

8.3 Agglomerative Hierarchical Clustering

Hierarchical clustering technigques are a second important category of cluster-
ing methods. As with K-means, these approaches are relatively old compared
to many clustering algorithms. but they still enjoy widespread use. There are
two basic approaches for generating a hierarchical clustering:

Agglomerative: Start with the points as individual clusters and. at each
step, merge the closest pair of clusters. This requires defining a notion
of cluster proximity.

Divisive: Start with one, all-inclusive cluster and, at each step. split a cluster
until only singleton clusters of individual points remain. In this case, we
need to decide which cluster to split at each step and how to do the
splitting.

Agelomerative hierarchical clustering techniques are by far the most common,
and, in this section, we will focus exclusively on these methods. A divisive
hierarchical clustering technique is deseribed in Section 9.4.2.

A hierarchical clustering is often displayed graphically using a tree-like
diagram called a dendrogram, which displays both the cluster-subcluster
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(a) Dendrogram. (b) Nested cluster diagram.

Figure 8.13. A hierarchical clustering of four points shown as a dendrogram and as nested clusters.

relationships and the order in which the clusters were merged (agglomerative
view) or split (divisive view). For sets of two-dimensional points, such as those
that we will use as examples, a hierarchical clustering can also be graphically
represented using a nested cluster diagram. Figure 8.13 shows an example of
these two types of figures for a set of four two-dimensional points. These points
were clustered using the single-link technique that is deseribed in Section 8.3.2.

8.3.1 Basic Agglomerative Hierarchical Clustering Algorithm

Many agglomerative hierarchical clustering techniques are variations on a sin-
gle approach: starting with individual points as clusters, successively merge
the two closest clusters until only one cluster remains. This approach is ex-
pressed more formally in Algorithm 8.3,

Algorithm 8.3 Basic agglomerative hierarchical clustering algorithm.
: Compute the proximity matrix, if necessary.
repeat

1

2

3. Merge the closest two clusters.

4 Update the proximity matrix to reflect the proximity between the new
cluster and the original clusters.




Detfining Proximity between Clusters

The key operation of Algorithm 8.3 is the computation of the proximity be-
tween two clusters, and it is the definition of cluster proximity that differ-
entiates the various agglomerative hierarchical technigques that we will dis-
cuss, Cluster proximity is typically defined with a particular type of cluster
in mind—see Section 8.1.2. For example., many agglomerative hierarchical
clustering techniques, such as MIN, MAX, and Group Average, come from
a graph-based view of clusters. MIN defines cluster proximity as the prox-
imity between the closest two points that are in different clusters, or using
graph terms, the shortest edge between two nodes in different subsets of nodes.
This yields contiguity-based clusters as shown in Figure 8.2(c). Alternatively,
MAX takes the proximity between the farthest two points in different clusters
to be the cluster proximity. or using graph terms, the longest edge between
two nodes in different subsets of nodes. (If our proximities are distances, then
the names, MIN and MAX, are short and suggestive. For similarities, however,
where higher values indicate closer points, the names seem reversed. For that
reason, we usually prefer to use the alternative names, single link and com-
plete link, respectively.) Another graph-based approach, the group average
technique, defines cluster proximity to be the average pairwise proximities (av-
erage length of edges) of all pairs of points from different clusters. Figure 8.14
illustrates these three approaches.

(a) MIN (single link.) (b) MAX [complete link.) (c) Group average.

Figure 8.14. Graph-based definitions of cluster proximity
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i Point | # Coordinate | y Coordinate
0.4 i Pl 0.40 0.53
03 83 ng p2 0.22 0.38
o p3 0.35 0.32
e pd 0.26 0.19
0.1 PS5 0.08 0.41
. pb 0.45 0.30

[+] 01 02 03 0.4 0.5 o6

Figure 8.15. Set of 6 two-dimensional points.

Table 8.3. xy coordinates of & points.

pl p2 pa pd ph ph
pl | 0.00 | 0.24 | 022 | 037 | 0.34 | 0.23
p2 | 024 [ 0.00 [ 0.15 | 0.20 | 0.14 | 0.25
pd | 022 [ 015 [ 000 | 015 | 0.28 | 0.11
pd | 037 [ 0.20 [ 0.15 | 0.00 | 0.20 | 0.22
pSs | 034 | 0.14 | 028 | 0.29 | 0.00 | 0.39
pb | 023 | 025 | 0.11 | 0.22 | 0.39 | 0.00

Table 8.4. Euclidean distance matrix for 6 points.

&,

(a) Single hnk clustering.

(b) Single link dendrogram.

Figure 8.16. Single link clustering of the six points shown in Figure 8.15.



is 0.11, and that is the height at which they are joined into one cluster in the
dendrogram. As another example, the distance between clusters {3,6} and
12,5} is given by

dist({3,6},12,5}) = min(disi(3,2),dist(6,2),dist(3,5),dist(6,5))
— min(0.15,0.25, 0.28, 0.30)
= 0.15.

5. With time and space complexity, explain DBSCAN clustering algorit
8.4.2 The DBSCAN Algorithm

(Given the previous definitions of core points, border points, and noise points,
the DBSCAN alpgorithm can be informally described as follows. Any two core
points that are close enough—within a distance Eps of one another—are put
in the same cluster. Likewise, any border point that is close enough to a core
point is put in the same cluster as the core point. (Ties may need to be resolved
if a border point is close to core points from different clusters.) Noise points
are discarded. The formal details are given in Algorithm 8.4. This algorithm
uses the same concepts and finds the same clusters as the original DBSCAN,
but is optimized for simplicity, not efficiency.

Algorithm 8.4 DBSCAN algorithm.

: Label all points as core, border, or noise points.

Eliminate noise points.

Put an edge between all core points that are within E'ps of each other.
Make each group of connected core pomnts into a separate cluster.

Assign each border point to one of the clusters of its associated core points.

o b

Time and Space Complexity

The basic time complexity of the DBSCAN algorithm is O(m x time to find

points in the Eps-neighborhood), where m is the number of points. In the
2

worst case, this complexitv is O(m However. in low-dimensional spaces,

points within a given distance of a specified point, and the time complexity
can be as low as O(mlogm). The space requirement of DBSCAN, even for
high-dimensional data, is O(m) because it is only necessary to keep a small
amount of data for each point, i.e., the cluster label and the identification of
each point as a core, horder, or noise point.



~
-

Figure 8.20. Center-based

density.

~
_/

noise point__

buldeiuint

_core point

Eps

Figure 8.21. Core, border, and noise points.

Apply K-Means clustering algorithm on the following dataset for two clusters (K=2).

X Y
1 185 72
2 170 56
3 168 60
4 179 68
5 182 72
6 188 77
Givenk =

Initial Centroid

Cluster X Y

kl .~ 185 T2

2 170 56




* (alculate Euclidean distance for the next dataset (168.60)

Distance [(x,y), (a,b)] =/ (x — a)?+(x — b)?

Distance from Cluster 2 = /(168 — 170)2+(60 — 56)2
(170.56) = J(=2)2+(-4)?
: -Vi+16
=420

=4472
Final Assignment

Dataset No X X Assignment
1 185 72 17
2 170 56 2
3 168 60 2
4 179 68 -
5 182 72 1+
6 188 77 1~




	Working of Naïve Bayes' Classifier:

