50, will be treated as malpractice.

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8

ixt gfsmester B.E. Degree Examggla, ion, June/July 2023
' Software gesﬂng

181S62

1 a. Explain program behavior msf%hts from a Venn Dlagr%m for functional testing and

structural testing.
b. Identify and explain faultytaxonomles with example.
) OR
2 a. With the flowchart the traditional tnangle Qgroblem implementation.
b.

Analyse and explaw e SATM screen.

’%"% Module-2

(10 Marks)
(10 Marks)

(10 Marks)
(10 Marks)

3 a. Write alpro ram to solve the triangle problem. Derive test cases for program based on
‘prog g ‘P P

boundary value analysis. ? Qmu

equivalence class testing and derive the test cases. /%

(10 Marks)

b. Write a program to solve corhgmssmn problem. AnalyZC it from the perspective of

(10 Marks)

decision table approach}’ %' 4 (10 Marks)
b. List the assumpnon& made in fault bggged $f”ﬁés’tmg and explamQ the mutation analysis with
sample program 37 » (10 Marks)
5 a. Analyze a{fﬁ*explam metric — b%sed testing. (10 Marks)
b. Explai{é define/Use testmgﬁthh lexample. CMRIT LIBRARY (10 Marks)
BANGALORE - 560 037
OR W,
6 a. Déﬁcnbe about scaffoldihg Dlscuss about Generic versus specific scaffolding. (08 Marks)
b.. Define : #
i) Test oracles)
i) Self— cthks
iii) Capture™ Nt
iv) Replay. * (12 Marks)
Module-4
7 a. Explain the basic prmmp?es in the frame work for test and analysis. (12 Marks)
b. Listand explain they‘ dependability properties test and analysis actives. (08 Marks)
% OR
8 a. Explain Software Rehablhty Engmeered Testing (SRET) approach with diagram. (10 Marks)
b. Identify and explam risk management in quality plan with respect to generic and specific

1ssues “’*‘%

(10 Marks)

181S62

Module-5

Analyze and explain integration testing strategi€s.«. (10 Marks)

What is regression testing? Explain regressip% test (10 Marks)
0‘; ‘“:‘ : 3

Explain Rapid Prototyping Life Cycleﬁ@gﬁithwaiagram. ¢ (10 Marks)

Explain Decomposition — Based E%W£fq$ion. Ve (10 Marks)

aﬁ?‘

r

gt

2 of2

USN

VTU Examination — June/July 2023

Solution
Sub: | Software Testing Sub . 181S62 Branch: | ISE
Code:
Exam .
Date- 28/07/2023 | Duration: | 3 Hrs | Max Marks: | 100 Sem VI
Answer any FIVE FULL Questions MARKS | CO
MODULE-1
1 (a) [Explain program behavior insights from a Venn Diagram for functional testing and
structural testing. (101 | col
Solution:
Insights from a Venn diagram
» Testing 1s fundamentally concerned with behavior, and behavior
is orthogonal to the structural view common to software (and
system) developers.
» A quick distinction 1s that the structural view focuses on what it
is and the behavioral view considers what it does.
» Consider a universe of program behaviors.
» Given a program and its specification, consider the set S of
specified behaviors and the set P of programmed behaviors.
Program behaviors Specification Pragram Specificatlon Program
S?;f;‘;ccf‘;ign (in\r[:l-zrsnx:::ed} Specification Program Specification Program
Identify and explain fault taxonomies with example. Col
(b) Solution: (10]

» Definitions of error and fault hinge on the distinction between process and
product: process refers to how we do something, and product is the end result of a
process.

» The point at which testing and Software Quality Assurance (SQA) meet is that

SQA typically tries to improve the product by improving the process.

Table 1.1 Inpul/Output Faults

Type Instances Table 1.2 Logic Faulls

Input Correct input not accepted Missing casels)

Incorrect input accepted Duplicate a(s)

Description wrong or missing

Extreme condition neglected

Parameters wrang or missing

Output | Wrang format Misinterpretation

Wrong result Missing condition

Correct result at wrong time (too early, too late) Extraneous condition(s)

Incomplete or missing result a
i 5 Test of wrong variable

Spurious result

Incorrect loop iteration

Spellingtgrammar

Wrong operator (e.g., < instead of <)

Cosmetic

Table 1.3 Computalion Faulls

Table 1.5 Data Faulis

Incorrect algarithm

Missing computatian Incorrcct initialization

Incorrect operand Incarrect Storage/acoess

Incorrect operation wrang flagfindex valuc

FParenthesis errar Incorrect packingunpacking

Insufficiont procision (round-off, trencation) Wrong variable used

wWrong built-in function Wirong data reference

Scaling or units ercor

Table 1.4 Interface Faulls

Incorrect daka dimension

Incarrect interrupt handling

Incarrect subscript

1A timing

Incorrect 1ypo

Call to wrong procodurc

Call o nonexisten procedure Incorrect data scape

Parameter mismatch (type, number] Sensar data out of limits

Incompatible types O by one

Inconsistent data

Superiluaws inclusian

OR

2 (a)

With the flowchart for the traditional triangle problem implementation.

Solution:
Program triangle1 ‘Fortran-like version
Dim a, b, c, match As INTEGER

ODutprut{TEnter 3 intopers which arms sides of o triangle™3
Imnpastdm s o p
Outprutd ™ Sicc A = " _a)y
COurpsutl™ SNiqddes 1 is b))
Crulpruti{™Nicde €© is “_c)
matach = O
I o == k»
m wwsatch == rmamtcis - §
= 1] 8
Ir s = =
dveatckh = gnatch - 2
el
=
T hern smoatch = match - 3
Ereoai v
B snumdcky = O3
" B o B s e
oy st PloLAC T rangle™)

e R IFf £ s P
st ™ MotAAS T rHRoangiae™)
Else If { &+ y=zm=in
“TEscun L TV T hmA‘rﬂ'ng'c »
p = ulpuel (TScalecree™
Erciir
s BT
Ermiir
e EX suoschye1
T If {ascrmi
T Fea=ws At Blot AT riangle™)
E L gt (T Irosceloa™h
Ermdlil
N B v o e

B f s P e B
sk st~ Mot A Triangle™)

| T4 BTN s praat (T Inosnccleos™)
Erwaiia
Elaaa I rmatc i3
T hererw ENF of Byt o= e
T hee=arn s praag(” Pl A T riangsle™)
s Crurpast (ClsosceleaT)
EFErsddlf
e et CCEguilaterml ™
ol iF ¥
Erad Il

Eriir

[10]

COl1

[input o 6. <
FLOWCHART FOR -
TRIANGLE PROBLEM

el

é

match = =
matche ¥

~ matchn =
> -
ra

i mIcTy =
s <EmcZ> =
r~
- -~ ™~
~ martch »
= —O7 R s
~ @ b v a+b =< c2
14
e 1 ~
N T W
=
¥ ez =X =5
~
1
10
Tz ===
~ Y
> ~

~
ot -
Eauiateral Trangie
=20 1s =

(b)

Analyze and explain the SATM screen.
Solution:

THE SATM TERMINAT.,

s

~

Select transaction:
balance =

deposit =
withdrawal = ./

Imvalid ATHM card. I will
N be retained. A M

WELCOME Receipts [1
to the ID Card []
Simels DO D
Auatomanuc Teller
Thachine & GO GO @
Please Insert your
card for service - @ .9 (:)
A S
CoD CANCEL
I Cash Dispensing Door |
l Deposit Envelope Door I
A S
- Screen 1 i ' Screen 2 Y Screen 3 T
Welcome
p!r_':xﬁe insert your Please enter your PIN Your PIN is incorrect.
ATH card A Please try asain. A
Screen < ™ Screen 5 Sorocn &

Balance is

Sdddd.dd

' Screen 7 Pt '

\

Screen 8 '

Screen @ ™

Enter amount._
Withdrawals must
. be multiples of 510~

' Screen 10 T

Temporarily unable to
process withdrawals,

Insufficient Funds!
Please enter a new
amount S

/

~ Screen 11 T

Your balance is being
updated. Please take

 Amnother transactdion? _f

-~
Screen 13 N

Please insert deposit

\.___cash from dispenser. /

Machine can anly
v dispense S10 notes s

< Scraan 12 Ty

Temporarcily unable to
praocess depasits.

v Another transaction? J

' Screen 14 Y

Your new balance is
being printed. Anaother

into depoxit sloc,

e transaction? _

< Screen 15 N

Please take your
receipt and ATM card.

N Thank vouw A

[10]

COl1

MODULE-2

3 (a)

Solution:

finclude=stdio . h=>
int main)

int a,b.c,cl . c2.c3;
char istriangle;
do

{

Write a program to solve the triangle problem. Derive test cases for program based
on boundary value analysis.

printf{"nenter 3 integers which are sides of triangle'n');

scanf{" ¥ed¥ed¥ed", &a, &b, &)
printf{"na=%d\b=%%dtc=2%d" a,b,c);
cl = a==1 && a<=10;

c?2= b>==1 & & b<=10

c3= c==1 && c==10;

if(lcl)

printfl “unthe value of a=%d is not the range of permitted value.a);

if (o)

printf{ ""nthe value of b=%d is not the range of permitted value" b):

if (1e3)

printf{'""nthe value of e=%4d i1s not the range of permitted value'.c);

T while(!{cl && c2 L& c3));
/f to check is it a triangle or not

ifi a<b+c && b<atc & & c<atb)
istriangle="y':

else
istriangle ="n";

if (istriangle=="y')
if ((a==b) K& (b==c)}

printf{ "equilateral triangle’n®};

else if ((a!=b) && (a'=c) & & (bl=c))
printfi{"scalene triangle’n™);
else
printfi "isosceles riangle'n'):
else
printf{"Not a triangle’'n'™):
return 0

H
Triangle Problem -Boundary value Test cases for input data
Input Data
Case Id Description Expected Qutput
Al b
1 Enter the min value fora, band ¢ 1] 1 Should display thl.! message Equilateral
triangle
7 Enter tl_'le min value fnr; items and 1] 1 Message should held]spla',red can't form a
min +1 for any one item1 Triangle
3 Enter the min value for 2 items and 1] 2 Message should be displayed can't form a
min +1 for any one item1 triangle
a Enter the min value for 2 items and s | 1 Message should be displayed can't form a
min +1 for any one item1 triangle
, Enter the normal value for 2 iterns s | g Should display the message [sosceles
and 1 item is min value triangle
6 Enter the normal value for 2 items s |1 Should display the message Isosceles
and 1 item is min value triangle
- Enter the normal value for 2 items 1] s Should display the message Isosceles
and 1 item is min value triangle
B Enter the normal Value fora,bandc | 5 | 5 Should display tﬂ?ﬂ?;’:'age Equilateral

CcOo2

(®) |Write a program to solve commission problem. Analyze it from the perspective of]
equivalence class testing and derive the test cases.
Solution:

[10] CcOo2

#include<sidio. h>=
int mainl)
{
int locks, stocks, barrels, tlocks, tstocks, tharcels:
float lprice, sprice, bprice, sales, codmm:
int ¢l,e2 3 ternp;
Iprice=45.0:
sprice=30.0;
bprice=25_0;
tlocks=0;
tstocks=100;
tharrels=0;
printf{"nenter the number of locks and to exit the loop enter -1 for locks'n™):
scanfi"%ud™, & locks);
while(locks!=-1)
i
cl={locks-<=0] |[locks=T0);
printfi"enter the number of stocks and barrels'n™);
scanf] "Fod%ed™, Sstocks Scbarrels):
c2=(stocks<==0|stocks=80);
c3={barrels==0||barrels=>9);
iffcl)
printf{"value of locks not in the range 1..70 ™)
elze
{
temp=tlocks+locks;
ifftemp=-70)
printf"new total locks =%ad not in the range 170 so old ™ temp);
elae
tlocks=temp;

printf]"total locks = Fadn" tlocks);

if{c2)
printf{™value of stocks not in the range 180 ")
elee

{

temp=tstocks+stocks;
ifftemp=-80)
printf{"new total stocks =%d not in the range 1..80 so old " temp);

alse
tstocks=temp;

1
printdi"total stocks=%d'n™ 1stocks);

iffc3)
printfi"value of barrels not in the range 1..90 ™);

clse

i

temp=tharrels+barrels;
i temp=90))
printf{ "new total barrels =%d not in the range 1_90 so old " temp);
clse
tharrels=temp;

H
printfi"total barrel=%d" tharrels);
printf "nenter the number of locks and to exit the loop enter -1 for locks'n™k
scanfi™od™,&locks);

H

printfi"ntotal locks = %d'ntotal stocks =%d'ntotal barrels =%d'n" tlocks, tstocks tbarrels);
sales = lprice®tlocks+sprice*tstocks+bprice*tharmels;

printf{ "nthe total sales=%fn" sales);

ifisales =0}
{
ifisales = LRO0.0)

{
comm={ 10% 1000 (;

comm=comm-+i 1 5*504;
comm=comm-+k20%(sales- 18000},

H

clse ifi sales = 1000)

i
comm =0 10* 1 ({0;
comm=comm-+} 1 5*(sales- 1000},

i
else
comm={0 10%sales;

printfi "the commission is=%fn",comm);
clse

printfi "there is no sales'n™);
return O

¥Weak Robusiness Equivalence Class

Case . Input Data
D t Expected Output
Id Eseripton [ocks | Stocks | Barrels *Pe F
Terminates the input loop and proceed
WR1 | Enter the value locks = -1 -1 40 45 to calculate sales and commission | if
Sales =)
. Enter the value less than -1 or equal to f
)
WEZ | e for locks and ather valid inputs 0 40 45 Walue of Locks not in the range 170
; Enter the value greater than 70 for .
WR3 locks and other valid inputs 71 40 45 Value of Locks not in the range 170
. Enter the value less than ar equal than .
WA | ctocks and ather vald inputs is 0 45 Value of stocks not in the rmnge 180
. Enter the value greater than B0 for .
WRS | ke and ather valid inputs is i1 45 Value of stocks not in the mnge 180
WRg | Ener the value less than or equal 0 for i5 40 0 Value of Barrels not in the range 190
barrels and other walid imputs
whry | EntEr the value greater than 30 far 3s 40 91 Value of Barrels not in the range 1.5
barrels and other walid imputs
Strong Roebustness Equivalence Class
Case Input Data
Descripti Expected Output
Id scription Locks | Stocks | Barrels *pe utp
gy | Enter the value less than -1 for lacks 2 | 40 | 45 | valueofLocks not in the range 1..70
and other valid inputs
Enter the value less than or equal than f
) . ¢
BRE | ke and other valid inputs 35 1 45 Walue of stocks not in the range 1,50
Enter the value less than or equal O far f
SB3 | |- rels and ather valid In puts 35 40 2 Value of Barrels not in the range 150
5R4 | Enter the locks and stocks less than or 2 -1 45 Walue of Locks not in the range 1..70
OR

4 (a)

Solution:

#include<stdio.h>
int main()

'
inta,b,c;
char istriangle;

Write a program to solve the triangle problem. Derive test cases for program based
on decision table approach.

printf{"enter 3 integers which are sides of triangle'n");
scanf("%d%d%d" ,&a, &b, &c);
printf{"a=%d\t, b=%d\t, c=%d\n", a, b, ¢);
if{ a<b+c && b<atc && c<atb)

istriangle="y";

else

istriangle ="n";

if (istriangle=="y")

if ((a==b) && (b==¢))
printf{"Equilateral triangle\n");

elsc if ((al=b) && (a!=c) && (b!=c))

printf{"Scalene triangle\n");

clse

printf{"Isosceles triangle\n");

clse

printf{"Not a triangle\n");

return 0;

;

[10]

CO2

Input data decision Table

RULES Rl |R2[R3I| R4 | R5| R6 | R7 | RR | R | R10 | RlI
Cl:a<b+c F|T| T | T | T|T|T|T|T T T
Cl:b<a+c - F T T T T T T T T T

" C3:c<ath -l -lFrlT|T{T|T|T|T| T]|T
Conditions
Cd:a=bh - - - T|T|T]|T F F F F
Ci:a=¢c - - - T | T|F F T| T F F
Ch:b=c - - - T F T F T F T F
al : Not a triangle X | X | X
a2 : Scalene triangle X
Actions a3 : [sosceles triangle X X X
a4 : Equilateral triangle X
a5 : Impossible X | X X
Case Id Drescription 2 In ult-.Dnta - Expected Output
Enter the value of a,band c Message should be
1 Such that a is not less than 20 5 5 displayed can't form a
sum of two sides triangle
Enter the value of 3, band c
Such that b is not less than Message should be
2 sum of two sides and a is 3 15 | 11 displayed can't form a
less than sum of other two triangle
sides
Enter the value of a, b and c
Such that cis not less than Message should be
3 sum of two sides and a and 4 5 20 displayed can't form a
b is less than sum of other triangle
two sides
Enter the value a, b and c Should display the
4 satisfying precondition and 5 5 5 message Equilateral
a=h, b=c and c=a triangle
Enter the value a ,band c "
5 satisfying precondition and 10 | 10 g Should display ti-_IE
a=band b # ¢ message Isosceles triangle
6 Ent.ert_he value 3,]_::n_and ¢ Should display the
satisfying precondition and 5] 7)
a#b b#candc#a message scalene triangle

(b)

ArSurryplacenss

(progreereer hypoteess

¥ Copbmg e hyptecs

Pmaﬁgﬂz;

2 Mactaddon @MW

ket

3 Ualed tHadacd™

Sonraqple o=

List the assumptions made in fault based testing and explain the mutation analysis
with sample program.
Solution:

[10]

CcO2

MODULE-3

5 (a) |Analyze and explain metric-based testing. [10] | CO3
Solution:
Metaric - “Boamd Tedfery
). Shalicopont omd Pegoclreads <F th?’
. DD +(}Jaﬁﬂf Tty
3- CDE&’WM‘ G)quﬁ % t:DD"i Pﬁvﬂrfg ¥
M. Madtiplt eonobhony LopTald
5. boap CoITOGl ﬁ]ﬁ-ﬂwﬂm
(b) [Explain define/Use testing with example. [10] | CO3
Solution:
5 g&j,tw‘ﬁm ;
DL F (Vi)
U3k (uim)d
P - UAC
£ -UML.
PATH () - clu-pabt
de .-.?aﬂ“
OR
6 (2) | Describe about scaffolding. Discuss about Generic versus specific scaffolding. [08] | CO3

Solution:

SCAFFOLDING

around a building during construction or maintenance.
+ Scaffoldings may include
-* Test drivers [substituting for a main or calling population)
-»Test harness (substituting for parts of the deployment environment)
-*Stubs (substituting for functionally called or used by the software under test)

the outcome of test execution.

» Code developed to facilitate testing is called scaffolding, by analogy to the temporary structures erected

+ The purpose of scaffolding is to provide controllability to execute test cases and observability to judge

GENERIC VERSUS SPECIFIC SCAFFOLDING

How general should scaffolding be? To answer

& We could build a driver and stubs for each test case or at least factor out some common code of the
driver and test management (e.g., JUnit)

« __. or further factor out some common support code, to drive a large number of test cases from data... or
further, generate the data automatically from a more abstract model (e.g., network traffic model)

Fully generic scaffolding may suffice for small numbers of hand -written test cases

+ The simplest form of scaffolding is a driver program that runs a single, specific test case.

+ It is worthwhile to write more generic test drivers that essentially interpret test case specifications.

+ A Jarge suite of automatically generated test cases and a smaller set of handwritten test cases can share
the same underlying generic test scaffolding

e Scaffolding to replace portions of the system is somewhat more demanding and again both generic and
application-specific approaches are possible

+ A gimplest stub - mock - can be generated automatically by analysis of the source code

e The balance of quality, scope and cost for a substantial piece of scaffolding software can be used in
several projects

« The balance is altered in favour of simplicity and quick construction for the many small pieces of
scaffolding that are typically produced during development to support unit and small-scale integration
testing

+ A guestion of costs and re-use — Just as for other kinds of software

(b)

efine:
i) Test oracles ii) Self-checks iii) Capture iv) Replay.
Solution:

TEST ORACLES

= In practice, the pass/fail criterion is usually imperfect.

» A test oracle may apply a pass/fail criterion that reflects only a part of the actual program specification,
or is an approximation, and therefore passes some program executions it ought to fail

Several partial test oracles may be more cost-effective than one that is more comprehensive

A test oracle may also give false alarms, failing an execution that is ought to pass.

False alarms in test execution are highly undesirable.

The best oracle we can obtain is an oracle that detects deviations from expectation that may or may not
be actual failure.

SELF-CHECKS AS ORACLES

An oracle can also be written as self checks
-Often possible to judge correctness without predicting results.

+ Typically these self checks are in the form of assertions, but designed to be checked during execution.
It is generally considered good design practice to make assertions and self checks to be free of side
effects on program state.

=« Self checks in the form of assertions embedded in program code are useful primarily for checking
module and subsystem-level specification rather than all program behaviour.

« Devising the program assertions that correspond in a natural way to specifications poses two main
challenges:

» Bridging the gap between concrete execution values and abstractions used in specification
p Dealing in a reasonable way with quantification over collection of values

Test Hamess

T Yest Case | Program

‘ Test Input I noee I | g Eailure

: i Self-checks § calura
: Notification :

CAPTURE AND REPLAY

+ Sometimes it is difficult to either devise a precise description of expected behaviour or adequately
characterize correct behaviour for effective self checks.
Example: even if we separate testing program functionally from GUI, some testing of the GUl is
required.

+ [f one cannot completely avoid human invelvement test case execution, one can at least avoid
unnecessary repetition of this cost and opportunity for error.

s The principle is simple:
The first time such a test case is executed, the oracle function is carried out by a human, and the
interaction sequence is captured. Provided the execution was judged (by human tester) to be correct,
the captured log now forms an (input, predicted output) pair for subsequent automated testing.

+ The savings from automated retesting with a captured log depends on how many build-and-test cycles
we can continue to use it, before it is invalidated by some change to the program.

s Mapping from concrete state to an abstract model of interacting sequences is some time possible but is
generally quite limited.

[12]

COo3

7 (a)

MODULE-4

(b)

Explain the basic principles in the frame work for test and analysis.
Solution:

) Lovsibrvily
ﬂ?)%ﬂoﬂwﬂo‘j
3) Roatichion)
1 Paretiteon
VN bm&(

¢> Peedbacie fm}}ﬂmf g

[12] CO4

List and explain the dependability properties test and analysis actives.
Solution:

D Lo edaned
‘Jb Wﬂgx‘abr‘ﬂ,&f
) Auslalocil;
H) MTBREF

5) Sﬁda"

) Yobusranis

¢) Haspols 9@19/@5

[08]

CO4

8 (a)

OR

Solution:

[P

%Lﬁ‘j’j/m’"J

Explain Software Reliability Engineered Testing (SRET) approach with diagram.

oot Foread

p W‘Mfw

[10]

CO4

(b)

Identify and explain risk management in quality plan with respect to generic and
specific issues.
Solution:

TR wm&p%ﬁﬁ MW‘
(PFDLUA O GeTs oS N De !

) Egeoepilioo Rikgag
w %L!W e

—{sm™

[10]

CO4

MODULE-5

9 (a)

Analyze and explain integration testing strategies.

Solution:
D "Bri bmﬁ"\'fﬁf.hmg 9 ikl ﬁnf'ﬁgda-&i:k ::9 Ktrakgef
%) Top dorxo 3 bottmoup Fedtey) boredii oot ‘

£) <Thread Fabenyf £) f"“‘fcaﬂ_ “‘“”“ﬁ

[10]

COs5s

(b)

What is regression testing? Explain regression test selection technique.
Solution:

ﬁ2zsfm¢,£ram <Teg o SUPR IR ”ﬁw
% Cotort G2 Graph wegTrEen AT

=7, . ~ t‘.ﬁ Zg—
Regerstioon. Tk Beletzom Teehoiguts 2 i

[10]

COs

OR

10 (a)

Explain Rapid Prototyping Life Cycle with diagram.
Solution:

[10]

CO5

(b)

Explain Decomposition — Based integration.
Solution:

D%@dmm 1mlu6<raﬂfan it aampl, %5"‘1

) Bt 9p ebaralin 1ok onampe M.

COs5

