
18CS643
Sixth Semester B.E. Degree Examination, June/July 2023

Cloud Computing and Its Applications

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

ANSWER SCHEME

Module 1
1.

a. Define cloud computing. Explain its characteristics and benefits. (06Marks)

The term cloud has historically been used in the telecommunications industry as an
abstraction of the network in system diagrams. It then became the symbol of the most popular
computer network, the Internet. This meaning also applies to cloud computing, which refers
to an Internet-centric way of computing. The Internet plays a fundamental role in cloud
computing, since it represents either the medium or the platform through which many cloud
computing services are delivered and made accessible. This aspect is also reflected in the
definition given by Armbrust et al.:

“Cloud computing refers to both the applications delivered as services over the Internet and
the hardware and system software in the data-centers that provide those services.”

The notion of multiple parties using a shared cloud computing environment is highlighted in
a definition proposed by the U.S. National Institute of Standards and Technology (NIST):

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.”

According to Reese,we can define three criteria to discriminate whether a service is delivered
in the cloud computing style:
• The service is accessible via a Web browser (non-proprietary) or a Web services
application
programming interface (API).
• Zero capital expenditure is necessary to get started.
• You pay only for what you use as you use it.

Characteristics and Benefits of Cloud Computing

1. On-demand self-service
AWS, Microsoft Azure, Google Cloud and other public cloud platforms make resources
available to users at the click of a button or API call. With data centers all over the world,
these vendors have vast amounts of compute and storage assets at the ready. This represents a
radical departure for IT teams accustomed to an on-premises procurement process that can
take months to complete.

2. Resource Pooling
Public cloud providers rely on multi-tenant architectures to accommodate more users at the
same time. Customers' workloads are abstracted from the hardware and underlying software,
which serve multiple customers on the same host. Cloud providers increasingly rely on
custom hardware and abstraction layers to improve security and speed users' access to
resources.

3. Scalability and Rapid Elasticity
Resource pooling enables scalability for cloud providers and users, letting them add or

remove compute, storage, networking and other assets as needed. This helps enterprise IT
teams optimize their cloud-hosted workloads and avoid end-user bottlenecks. Clouds can
scale vertically or horizontally, and service providers offer automation software to handle
dynamic scaling for users.

4. Pay-per-use pricing
This cloud computing characteristic shifts IT spending from Capex to Opex as providers offer
per-second billing. This model achieves economies of scale through reducing costs on a large
scale and seeing an increase in efficiency. Though this can generally be seen as a positive, IT
teams must be careful since their resource needs likely aren't static. VMs should be right-
sized, turned off while not in use, or scaled down as conditions dictate. Otherwise,
organizations waste money and can end up with sticker shock when the monthly bill arrives.

5. Measured service
Measuring cloud service usage is useful for both a cloud provider and its customers. The
provider and the customer monitor and report on the use of resources and services, such as
VMs, storage, processing and bandwidth. That data is used to calculate the customer's
consumption of cloud resources and feeds into the pay-per-use model. The cloud provider,
meanwhile, can better understand how customers utilize its resources and potentially improve
the infrastructure and cloud computing services offered.

6. Resiliency and availability
Cloud providers use several techniques to guard against downtime, such as minimizing
regional dependencies to avoid single points of failure. Users can also extend their workloads
across availability zones, which have redundant networks connecting multiple data centers in
relatively close proximity. Some higher-level services automatically distribute workloads
across availability zones.

7. Security
While many enterprises balked at migrating workloads because of security fears, those
concerns have largely subsided, partly due to the benefits of the above characteristics of cloud
computing. Cloud vendors employ some of the best security experts in the world and are
generally better equipped to handle threats than most in-house IT teams. In fact, some of the
biggest financial firms in the world say the cloud is a security asset.

8. Broad network access
A big part of the cloud's utility is its ubiquity. Data can be uploaded and accessed from
anywhere with an internet connection. Users can work from any location. The cloud is an
attractive option for most enterprises that have a mix of operating systems, platforms and
devices.

b. List the characteristics and benefits of cloud computing. (06Marks)

Cloud computing has some interesting characteristics that bring benefits to both cloud service
consumers (CSCs) and cloud service providers (CSPs). These characteristics are:

 No up-front commitments
 On-demand access
 Nice pricing
 Simplified application acceleration and scalability
 Efficient resource allocation
 Energy efficiency
 Seamless creation and use of third-party services

The most evident benefit from the use of cloud computing systems and technologies is the
increased economical return due to the reduced maintenance costs and operational costs
related to IT software and infrastructure.
This is mainly because IT assets, namely software and infrastructure, are turned into utility
costs, which are paid for as long as they are used, not paid for up front.
IT infrastructure and software generated capital costs, since they were paid up front so that
business start-ups could afford a computing infrastructure, enabling the business activities of
the organization. The revenue of the business is then utilized to compensate over time for
these costs.

End users can benefit from cloud computing by having their data and the capability of
operating on it always available, from anywhere, at any time, and through multiple devices.
Information and services stored in the cloud are exposed to users by Web-based interfaces
that make them accessible from portable devices as well as desktops at home.

c. Explain the following: (08Marks)

i) Amazon Web Services:
AWS offers comprehensive cloud IaaS services ranging from virtual compute, storage, and

networking to complete computing stacks. AWS is mostly known for its compute and
storage-on- demand services, namely Elastic Compute Cloud (EC2) and Simple Storage
Service (S3). EC2 provides users with customizable virtual hardware that can be used as the
base infrastructure for deploying computing systems on the cloud. It is possible to choose
from a large variety of virtual hardware configurations, including GPU and cluster instances.
EC2 also provides the capability to save a specific running instance as an image, thus
allowing users to create their own templates for deploying systems. These templates are
stored into S3 that delivers persistent storage on demand. S3 is organized into buckets; these
are containers of objects that are stored in binary form and can be enriched with attributes.
Users can store objects of any size, from simple files to entire disk images, and have them
accessible from everywhere.

ii) Microsoft Azure
Microsoft Azure is a cloud operating system and a platform for developing applications in

the cloud. Applications in Azure are organized around the concept of roles, which identify a
distribution unit for applications and embody the application’s logic. Currently, there are
three types of role:

Web role, worker role, and virtual machine role. The Web role is designed to host a Web
application, the worker role is a more generic container of applications and can be used to
perform workload processing, and the virtual machine role provides a virtual environment in
which the computing stack can be fully customized, including the operating systems.

OR
2.

a. Explain with a neat diagram Type-I and Type-II hypervisors. (8 Marks)

A fundamental element of hardware virtualization is the hypervisor, or virtual machine
manager (VMM). It recreates a hardware environment in which guest operating systems are
installed. There are two major types of hypervisor: Type I and Type II (see Figure below).
Type I hypervisors run directly on top of the hardware. Therefore, they take the place of
theoperating systems and interact directly with the ISA interface exposed by the underlying
hardware, and they emulate this interface in order to allow the management of guest
operating systems. This type of hypervisor is also called a native virtual machine since it
runs natively on hardware.

Type II hypervisors require the support of an operating system to provide virtualization

services. This means that they are programs managed by the operating system, which
interact with it through the ABI and emulate the ISA of virtual hardware for guest operating
systems. This type of hypervisor is also called a hosted virtual machine since it is hosted
within an operating system.

Conceptually, a virtual machine manager is internally organized as described in Figure
above. Three main modules, dispatcher, allocator, and interpreter, coordinate their activity
in order to emulate the underlying hardware. The dispatcher constitutes the entry point of
the monitor and reroutes the instructions issued by the virtual machine instance to one of the
two other modules. The allocator is responsible for deciding the system resources to be
provided to the VM: whenever a virtual machine tries to execute an instruction that results
in changing the machine resources associated with that VM, the allocator is invoked by the
dispatcher. The interpreter module consists of interpreter routines. These are executed
whenever a virtual machine executes a privileged instruction: a trap is triggered and the
corresponding routine is executed.

b. List and explain the different various cloud competing platforms and technologies. (6 Marks)

Development of a cloud computing application happens by leveraging platforms and
frameworks that provide different types of services, from the bare-metal infrastructure to
customizable applications serving specific purposes.
a. Amazon web services (AWS)
b. Google AppEngine
c. Microsoft Azure
d. Hadoop
e. Force.com and Salesforce.com
f. Manjrasoft Aneka

Amazon web services (AWS)
AWS offers comprehensive cloud IaaS services ranging from virtual compute, storage, and
networking to complete computing stacks. AWS is mostly known for its compute and
storage-on-demand services, namely Elastic Compute Cloud (EC2) and Simple Storage
Service (S3). EC2 provides users with customizable virtual hardware that can be used as the
base infrastructure for deploying computing systems on the cloud. It is possible to choose
from a large variety of virtual hardware configurations, including GPU and cluster instances.
EC2 also provides the capability to save a specific running instance as an image, thus
allowing users to create their own templates for deploying systems. These templates are
stored into S3 that delivers persistent storage on demand. S3 is organized into buckets; these
are containers of objects that are stored in binary form and can be enriched with attributes.
Users can store objects of any size, from simple files to entire disk images, and have them
accessible from everywhere.

Google AppEngine

Google AppEngine is a scalable runtime environment mostly devoted to executing Web
applications. These take advantage of the large computing infrastructure of Google to
dynamically scale as the demand varies over time. AppEngine provides both a secure
execution environmen and a collection of services that simplify the development of scalable
and high-performance Web applications. These services include in-memory caching,
scalable data store, job queues, messaging, and cron tasks. Developers can build and test
applications on their own machines using the AppEngine software development kit (SDK).
Once development is complete, developers can easily migrate their application to
AppEngine, set quotas to contain the costs generated, and make the application available to
the world. The languages currently supported are Python, Java, and Go.

Microsoft Azure
Microsoft Azure is a cloud operating system and a platform for developing applications in
the cloud. Applications in Azure are organized around the concept of roles, which identify a
distribution unit for applications and embody the application’s logic. Currently, there are
three types of role: Web role, worker role, and virtual machine role. The Web role is
designed to host a Web application, the worker role is a more generic container of
applications and can be used to perform workload processing, and the virtual machine role
provides a virtual environment in which the computing stack can be fully customized,
including the operating systems.

Hadoop
Apache Hadoop is an open-source framework that is suited for processing large data sets on
commodity hardware. Hadoop is an implementation of MapReduce, an application
programming model developed by Google, which provides two fundamental operations for
data processing: map and reduce. The former transforms and synthesizes the input data
provided by the user; the latter aggregates the output obtained by the map operations.
Hadoop provides the runtime environment, and developers need only provide the input data
and specify the map and reduce functions that need to be executed.

Force.com and Salesforce.com
Force.com is a cloud computing platform for developing social enterprise applications. The
platform is the basis for SalesForce.com, a Software-as-a-Service solution for customer
relationship management. Force.com allows developers to create applications by composing
ready-to-use blocks; a complete set of components supporting all the activities of an
enterprise are available. The platform provides complete support for developing applications,
from the design of the data layout to the definition of business rules and workflows and the
definition of the user interface.

Manjrasoft Aneka
Manjrasoft Aneka is a cloud application platform for rapid creation of scalable applications
and their deployment on various types of clouds in a seamless and elastic manner. It
supports a collection of programming abstractions for developing applications and a
distributed runtime environment that can be deployed on heterogeneous hardware (clusters,
networked desktop computers, and cloud resources). Developers can choose different
abstractions to design their application: tasks, distributed threads, and map-reduce. These
applications are then executed on the distributed service-oriented runtime environment,
which can dynamically integrate additional resource on demand.

c. Withof neat diagram, explain the cloud computing reference model. (8 Marks)

The Cloud Reference Model
Cloud computing supports any IT service that can be consumed as a utility and delivered through a
network, most likely the Internet. Such characterization includes quite different aspects: infrastructure,
development platforms, application and services.

Architecture
It is possible to organize all the concrete realizations of cloud computing into a layered view covering
the entire stack (see Figure below), from hardware appliances to software systems. Cloud resources
are harnessed to offer “computing horsepower” required for providing services. Cloud infrastructure

can be heterogeneous in nature because a variety of resources, such as clusters and even networked
PCs, can be used to build it.

The physical infrastructure is managed by the core middleware, the objectives of which are to provide
an appropriate runtime environment for applications and to best utilize resources. At the bottom of the
stack, virtualization technologies are used to guarantee runtime environment customization,
application isolation, sandboxing, and quality of service. Hardware virtualization is most commonly
used at this level. Hypervisors manage the pool of resources and expose the distributed infrastructure
as a collection of virtual machines. By using virtual machine technology it is possible to finely
partition the hardware resources such as CPU and memory and to virtualize specific devices, thus
meeting the requirements of users and applications. This solution is generally paired with storage and
network virtualization strategies, which allow the infrastructure to be completely virtualized and
controlled.
Infrastructure management is the key function of core middleware, which supports capabilities such as
negotiation of the quality of service, admission control, execution management and monitoring,
accounting, and billing.
The combination of cloud hosting platforms and resources is generally classified as an Infrastructure-
as-a-Service (IaaS) solution. We can organize the different examples of IaaS into two categories:
Some of them provide both the management layer and the physical infrastructure; others provide only
the management layer (IaaS (M)).
In this second case, the management layer is often integrated with other IaaS solutions that provide
physical infrastructure and adds value to them.
IaaS solutions are suitable for designing the system infrastructure but provide limited services to build
applications. Such service is provided by cloud programming environments and tools, which form a
new layer for offering users a development platform for applications.
The range of tools include Web-based interfaces, command-line tools, and frameworks for concurrent
and distributed programming. In this scenario, users develop their applications specifically for the
cloud by using the API exposed at the user-level middleware. For this reason, this approach is also
known as Platform-as-a-Service (PaaS) because the service offered to the user is a development
platform rather than an infrastructure.
The top layer of the reference model depicted in Figure below contains services delivered at the
application level. These are mostly referred to as Software-as -a-Service (SaaS). In most cases these
are Web-based applications that rely on the cloud to provide service to end users. The horsepower of
the cloud provided by IaaS and PaaS solutions allows independent software vendors to deliver their
application services over the Internet.
Table given below summarizes the characteristics of the three major categories used to classify cloud
computing solutions. In the following section, we briefly discuss these characteristics along with some
references to practical implementations

a. AWS computing, storage, and communication services.
Amazon was the first provider of cloud computing; it announced a limited public beta release of
its Elastic Computing platform called EC2 in August 2006. Elastic Compute Cloud (EC2) is a
web service with a simple interface for launching instances of an application under several
operating systems.
b. Elastic Block Store.
EBS provides persistent block level storage volumes for use with EC2 instances. A volume
appears to an application as a raw, unformatted and reliable physical disk; the size of the
storage volumes ranges from one gigabyte to one terabyte.

c. Simple DB.
Simple DB is a non-relational data store that allows developers to store and query data items
via web services requests; it supports store and query functions traditionally provided only
by relational databases. Simple DB creates multiple geographically distributed copies of
each data item and supports high performance web applications; at the same time, it
manages automatically the infrastructure provisioning, hardware and software maintenance,
replication and indexing of data items, and performance tuning.
d. Simple Queue Service.
SQS is a hosted message queue. SQS is a system for supporting automated workflows; it
allows multiple EC2 instances to coordinate their activities by sending and receiving SQS
messages. Any computer connected to the Internet can add or read messages without any
installed software or special firewall configurations.

ii) Microsoft Azure
Azure and Online Services are PaaS and, respectively, SaaS cloud platforms provided

by Microsoft. Azure is an operating system, SQL Azure is a cloud-based version of the SQL
Server, and Azure AppFabric (formerly .NET Services) is a collection of services for cloud
applications.

Windows Azure has three core components: Compute which provides a computation
environment, Storage for scalable storage, and Fabric Controller which deploys, manages,
and monitors applications; it interconnects nodes consisting of servers, high-speed
connections, and switches. The Content Delivery Network (CDN) maintains cache copies of
data to speedup computations. The Connect subsystem supports IP connections between the
users and their applications running on Windows Azure.

The API interface to Windows Azure is built on REST, HTTP and XML. The
platform includes five services: Live Services, SQL Azure, AppFabric, SharePoint, and
Dynamics CR. A client library and tools are also provided for developing cloud applications
in Visual Studio.

The computations carried out by an application are implemented as one or more roles;
an application typically runs multiple instances of a role. One distinguishes: (i) Web role

instances used to create web applications; (ii) Worker role instances used to run Window-
based code; and (iii) VM role instances running user-provided Windows Server 2008 R2
images.

iii) Hadoop
The solutions just listed are explicitly based on Hadoop. Cloud providers also offer other

services, based on different technologies, for managing and analyzing large amounts of data.
Some offer SQL-like query capabilities similar to Hive or Apache Impala, and others offer
processing pipelines like Apache Oozie. It may be possible to use those services to augment
Hadoop clusters, managed either directly or through the cloud provider’s own prepackaged
solution, depending on where and how data is stored.

Of course, these tools share the same disadvantages as the Hadoop-based solutions in
terms of moving further away from the open source world and its interoperability benefits. Since
they are not based on Hadoop, there is a separate learning curve for them, and the effort could be
wasted if they are ever discarded in favor of something that works on Hadoop, or on a different
cloud provider, or even on-prem. Their ready availability and ease of use, however, can be
attractive.

b. Define virtualization and explain hardware level Virtualization with its pro’s and con’s of
virtualization. (10 Marks)

Virtualization technology is one of the fundamental components of cloud computing,
especially in regard to infrastructure-based services. It encompasses a collection of solutions
allowing the abstraction of some of the fundamental elements for computing, such as hardware,
runtime environments, storage, and networking. Virtualization allows the creation of a secure,
customizable, and isolated execution environment for running applications, even if they are
untrusted, without affecting other users’ applications. The basis of this technology is the
ability of a computer pro-gram—or a combination of software and hardware—to emulate an
executing environment separate from the one that hosts such programs.

Hardware level virtualization
Hardware-assisted virtualization. This term refers to a scenario in which the

hardware provides architectural support for building a virtual machine manager able to run a
guest operating system in complete isolation. This technique was originally introduced in
the IBM System/370. At present, examples of hardware-assisted virtualization are the
extensions to the x86-64 bit architecture introduced with Intel VT (formerly known as
Vanderpool) and AMD V (formerly known as Pacifica). Intel and AMD introduced
processor extensions, and a wide range of virtualization solutions took advantage of them:
Kernel-based Virtual Machine (KVM), VirtualBox, Xen, VMware, Hyper-V, Sun xVM,
Parallels, and others.

Full virtualization. Full virtualization refers to the ability to run a program, most
likely an operating system, directly on top of a virtual machine and without any
modification, as though it were run on the raw hardware. To make this possible, virtual
machine managers are required to provide a complete emulation of the entire underlying
hardware. The principal advantage of full virtualization is complete isolation, which leads to
enhanced security, ease of emulation of different architectures, and coexistence of different
systems on the same platform.

Paravirtualization. This is a not-transparent virtualization solution that allows
implementing thin virtual machine managers. Paravirtualization techniques expose a
software interface to the virtual machine that is slightly modified from the host and, as a
consequence, guests need to be modified. The aim of paravirtualization is to provide the
capability to demand the execution of performance-critical operations directly on the host,
thus preventing performance losses that would otherwise be experienced in managed
execution.

Partial virtualization. Partial virtualization provides a partial emulation of the
underlying hard-ware, thus not allowing the complete execution of the guest operating
system in complete isolation. Partial virtualization allows many applications to run
transparently, but not all the features of the operating system can be supported.

Advantages of Virtualization
• Managed execution and isolation are perhaps the most important advantages of

virtualization. In the case of techniques supporting the creation of virtualized execution
environments, these two characteristics allow building secure and controllable computing
environments.

• Portability is another advantage of virtualization, especially for execution
virtualization techni-ques. Virtual machine instances are normally represented by one or
more files that can be easily transported with respect to physical systems.

• Portability and self-containment also contribute to reducing the costs of
maintenance, since the number of hosts is expected to be lower than the number of virtual
machine instances. Since the guest program is executed in a virtual environment, there is
very limited opportunity for the guest program to damage the underlying hardware.

• Finally, by means of virtualization it is possible to achieve a more efficient use of
resources. Multiple systems can securely coexist and share the resources of the underlying
host, without interfering with each other.

Disadvantages of Virtualization
Degradation

Performance is definitely one of the major concerns in using virtualization technology.
Since virtualization interposes an abstraction layer between the guest and the host, the guest
can experience increased latencies (delays).

For instance, in the case of hardware virtualization, where the intermediate emulates a
bare machine on top of which an entire system can be installed, the causes of performance
degradation can be traced back to the overhead introduced by the following activities:

• Maintaining the status of virtual processors
• Support of privileged instructions (trap and simulate privileged instructions)
• Support of paging within VM
• Console functions

Inefficiency and Degraded User Experience
Virtualization can sometime lead to an inefficient use of the host. In particular, some

of the specific features of the host cannot be exposed by the abstraction layer and then
become inaccessible. In the case of hardware virtualization, this could happen for device
drivers: The virtual machine can sometime simply provide a default graphic card that maps
only a subset of the features available in the host. In the case of programming-level virtual
machines, some of the features of the underlying operating systems may become
inaccessible unless specific libraries are used.

Security Holes and New Threats
Virtualization opens the door to a new and unexpected form of phishing. The

capability of emulating a host in a completely transparent manner led the way to malicious
programs that are designed to extract sensitive information from the guest.

The same considerations can be made for programming-level virtual machines:
Modified versions of the runtime environment can access sensitive information or monitor
the memory locations utilized by guest applications while these are executed.

Module 2
3.

a. Explain the following in detail
i) Hardware as service ii) Platform as service iii) Software as service. (10 Marks)

i) Hardware As A Service

Infrastructure- and Hardware-as-a-Service (IaaS/HaaS) solutions are the most popular
and developed market segment of cloud computing. They deliver customizable
infrastructure on demand. The available options within the IaaS offering umbrella range
from single servers to entire infrastructures, including network devices, load balancers, and
database and Web servers. The main technology used to deliver and implement these
solutions is hardware virtualization: one or more virtual machines opportunely configured
and interconnected define the distributed system on top of which applications are installed

and deployed. Virtual machines also constitute the atomic components that are deployed and
priced according to the specific features of the virtual hardware: memory, number of
processors, and disk storage. From the perspective of the customer it reduces the
administration and maintenance cost as well as the capital costs allocated to purchase
hardware.

ii) Platform As A Service

Platform-as-a-Service (PaaS) solutions provide a development and deployment
platform for running applications in the cloud. They constitute the middleware on top of
which applications are built. A general overview of the features characterizing the PaaS
approach is given in Figure 4.3. Application management is the core functionality of the
middleware. PaaS implementations provide applications with a runtime environment and do
not expose any service for managing the underlying infrastructure. They automate the
process of deploying applications to the infrastructure, configuring application components,
provisioning and configuring supporting technologies such as load balancers and databases,
and managing system change based on policies set by the user. The core middleware is in
charge of managing the resources and scaling applications on demand or automatically,
according to the commitments made with users. From a user point of view, the core
middleware exposes interfaces that allow programming and deploying applications on the
cloud. These can be in the form of a Web-based interface or in the form of programming
APIs and libraries.

iii) Software As A Service

Software-as -a-Service (SaaS) is a software delivery model that provides access to
applications through the Internet as a Web-based service. It provides a means to free users
from complex hardware and software management by offloading such tasks to third parties,
which build applications accessible to multiple users through a Web browser. In this
scenario, customers neither need install anything on their premises nor have to pay
considerable up-front costs to purchase the software and the required licenses. The SaaS
model is appealing for applications serving a wide range of users and that can be adapted to
specific needs with little further customization. This requirement characterizes SaaS as a
“one-to-many” software delivery model, whereby an application is shared across multiple
users. This is the case of CRM 3 and ERP 4 applications that constitute common needs for
almost all enterprises, from small to medium-sized and large business. Every enterprise will
have the same requirements for the basic features concerning CRM and ERP; different
needs can be satisfied with further customization.

ASPs (application service providers) has some of the core characteristics of SaaS:
• The product sold to customer is application access.
• The application is centrally managed.
• The service delivered is one-to-many.
• The service delivered is an integrated solution delivered on the contract, which

means
provided as promised.

ASPs provide access to packaged software solutions that addressed the needs of a
variety of customers. The SaaS approach introduces a more flexible way of delivering
application services that are fully customizable by the user by integrating new services,
injecting their own components, and designing the application and information workflows.
The benefits delivered are the following:

1. Software cost reduction and total cost of ownership (TCO) were paramount
2. Service-level improvements
3. Rapid implementation
4. Standalone and configurable applications
5. Rudimentary application and data integration
6. Subscription and pay-as-you-go (PAYG) pricing

b. Explain the open challenges faced in cloud computing in detail. (10 Marks)

Cloud computing presents many challenges for industry and academia. There is a
significant amount of work in academia focused on defining the challenges brought by this
phenomenon.

In this section, we highlight the most important ones.
• Cloud definition
• Cloud interoperability and standards
• Scalability and fault tolerance
• Security, trust, and privacy
• Organizational aspects

4.4.1 Cloud definition
There have been several attempts made to define cloud computing and to provide a

classification of all the services and technologies identified as such. NSIT characterizes
cloud computing as on-demand self-service, broad network access, resource-pooling, rapid
elasticity, and measured service; classifies services as SaaS, PaaS, and IaaS; and categorizes
deployment models as public, private, community, and hybrid clouds. Alternative
taxonomies for cloud services. David Linthicum, founder of Blue Mountains Labs, provides
a more detailed classification, which comprehends 10 different classes and better suits the
vision of cloud computing within the enterprise. These characterizations and taxonomies
reflect what is meant by cloud computing at the present time, but being in its infancy the
phenomenon is constantly evolving, and the same will happen to the attempts to capture the
real nature of cloud computing.

4.4.2 Cloud interoperability and standards
To fully realize this goal, introducing standards and allowing interoperability between

solutions offered by different vendors are objectives of fundamental importance. Vendor
lock-in constitutes one of the major strategic barriers against the seamless adoption of cloud
computing at all stages. The presence of standards that are actually implemented and
adopted in the cloud computing community could give room for interoperability and then
lessen the risks resulting from vendor lock-in. The first steps toward a standardization
process have been made, and a few organizations, such as the Cloud Computing
Interoperability Forum (CCIF), the Open Cloud Consortium, and the DMTF Cloud
Standards Incubator, are leading the path.

Another interesting initiative is the Open Cloud Manifesto, which embodies the point
of view of various stakeholders on the benefits of open standards in the field. The Open
Virtualization Format (OVF) is an attempt to provide a common format for storing the
information and metadata describing a virtual machine image. Even though the OVF
provides a full specification for packaging and distributing virtual machine images in
completely platform-independent fashion, it is supported by few vendors that use it to
import static virtual machine images.

4.4.3 Scalability and fault tolerance
The ability to scale on demand constitutes one of the most attractive features of cloud

computing. Clouds allow scaling beyond the limits of the existing in-house IT resources,
whether they are infrastructure (compute and storage) or applications services. To
implement such a capability, the cloud middleware has to be designed with the principle of
scalability along different dimensions in mind— for example, performance, size, and load.

The cloud middleware manages a huge number of resource and users, which rely on
the cloud to obtain the horsepower. In this scenario, the ability to tolerate failure becomes
fundamental, sometimes even more important than providing an extremely efficient and
optimized system. Hence, the challenge in this case is designing highly scalable and fault-
tolerant systems that are easy to manage and at the same time provide competitive
performance.

4.4.4 Security, trust, and privacy
Security, trust, and privacy issues are major obstacles for massive adoption of cloud

computing. The traditional cryptographic technologies are used to prevent data tampering

and access to sensitive information. The massive use of virtualization technologies exposes
the existing system to new threats, which previously were not considered applicable.
Information can be stored within a cloud storage facility using the most advanced
technology in cryptography to protect data and then be considered safe from any attempt to
access it without the required permissions. The lack of control over data and processes also
poses severe problems for the trust we give to the cloud service provider and the level of
privacy we want to have for our data.

4.4.5 Organizational aspects
More precisely, storage, compute power, network infrastructure, and applications are

delivered as metered services over the Internet. This introduces a billing model that is new
within typical enterprise IT departments, which requires a certain level of cultural and
organizational process maturity.

In particular, the following questions have to be considered:
• What is the new role of the IT department in an enterprise that completely or
significantly relies on the cloud?
• How will the compliance department perform its activity when there is a considerable
lack of control over application workflows?
• What are the implications (political, legal, etc.) for organizations that lose control over
some aspects of their services?
• What will be the perception of the end users of such services?

From an organizational point of view, the lack of control over the management of
data and processes poses not only security threats but also new problems that previously did
not exist.

OR
4.

a. Exp1ain the following deployment mode platform for building Aneka cloud
i) Private cloud, ii) Public cloud, and iii) Hybrid cloud. (10 Marks)

i) Private cloud

A private deployment mode is mostly constituted by local physical resources and
infrastructure management software providing access to a local pool of nodes, which might be
virtualized.

Figure 5.5 shows a common deployment for a private Aneka Cloud. This deployment is
acceptable for a scenario in which the workload of the system is predictable and a local virtual
machine manager can easily address excess capacity demand. Most of the Aneka nodes are
constituted of physical nodes with a long lifetime and a static configuration and generally do not
need to be reconfigured often. The different nature of the machines harnessed in a private
environment allows for specific policies on resource management and usage that can be
accomplished by means of the Reservation Service. For example, desktop machines that are used
during the day for office automation can be exploited outside the standard working hours to
execute distributed applications. Workstation clusters might have some specific legacy software
that is required for supporting the execution of applications and should be executed with special
requirements.

ii) Public cloud

Public Cloud deployment mode features the installation of Aneka master and worker
nodes over a completely virtualized infrastructure that is hosted on the infrastructure of one
or more resource providers such as Amazon EC2 or GoGrid.

Figure 5.6 provides an overview of this scenario. The deployment is generally
contained within the infrastructure boundaries of a single IaaS pro- vider. The reasons for
this are to minimize the data transfer between different providers, which is generally priced
at a higher cost, and to have better network performance. In this scenario it is pos- sible to
deploy an Aneka Cloud composed of only one node and to completely leverage dynamic
provisioning to elastically scale the infrastructure on demand. A fundamental role is played
by the Resource Provisioning Service, which can be configured with different images and
templates to instantiate. Other important services that have to be included in the master node
are the Accounting and Reporting Services. These provide details about resource utilization
by users and applications and are fundamental in a multitenant Cloud where users are billed
according to their consumption of Cloud capabilities.

iii) Hybrid cloud

The hybrid deployment model constitutes the most common deployment of Aneka. In
many cases, there is an existing computing infrastructure that can be leveraged to address the
computing needs of applications. This infrastructure will constitute the static deployment of
Aneka that can be elastically scaled on demand when additional resources are required.

An overview of this deployment is presented in Figure 5.7. This scenario constitutes
the most complete deployment for Aneka that is able to leverage all the capabilities of the
framework:

•Dynamic Resource Provisioning
•Resource Reservation
•Workload Partitioning (Scheduling)
•Accounting, Monitoring, and Reporting
In a hybrid scenario, heterogeneous resources can be used for different purposes. As

we discussed in the case of a private cloud deployment, desktop machines can be reserved
for low priority work- load outside the common working hours. The majority of the
applications will be executed on work- stations and clusters, which are the nodes that are
constantly connected to the Aneka Cloud. Any additional computing capability demand can
be primarily addressed by the local virtualization facilities, and if more computing power is
required, it is possible to leverage external IaaS providers.

b. Explain Aneka SDK in detail. (10 Marks)

Aneka provides APIs for developing applications on top of existing programming models,
implementing new programming models, and developing new services to integrate into the
Aneka Cloud.

The SDK provides support for both programming models and services by
- The Application Model
- The Service Model.

Application Model
• The Application Model covers the development of applications and new programming

models
• It Consists of Application Class & Application Manager
• Application Class – Provide user/developer view about distributed applications of the Aneka

cloud
• Application Manager – Are Internal components that control and monitor the execution of

Aneka clouds
The Application Class can be represented by following class diagram

Note: All the Aneka Application<W,M> class where W stands for Worker and M stands for
Manager is inherited from base class and all Manual services are represented by WorkUnitClass.
In addition, there are two other classes in Application Class representation viz: Configuration
Class and Application Data Class

The Application manager is represented with following class diagram:

Also, the table given below summarizes Application Class, the programming models
supported and work units assigned to them.

The Service Model defines the general infrastructure for service development.
The Aneka Service Model defines the basic requirements to implement a service that can

be hosted in an Aneka Cloud. The container defines the runtime environment in which services
are hosted. Each service that is hosted in the container must use IService interface, which exposes
the following methods and properties:

 Name and status
 Control operations such as Start, Stop, Pause, and Continue methods
 Message handling by means of the HandleMessage method

Module 3
5.

a. What is thread? Explain the thread API’s techniques for parallel computation. (08Marks)

A thread identifies a single control flow, which is a logical sequence of instructions,
within a process. By logical sequence of instructions, we mean a sequence of instructions
that have been designed to be executed one after the other one.

Operating systems that support multithreading identify threads as the minimal
building blocks for expressing running code.

Each process contains at least one thread but, in several cases, is composed of many
threads having variable lifetimes. Threads within the same process share the memory space
and the execution context.

In a multitasking environment the operating system assigns different time slices to
each process and interleaves their execution. The process of temporarily stopping the
execution of one process, saving all the information in the registers, and replacing it with the
information related to another process is known as a context switch.

Figure 6.2 provides an overview of the relation between threads and processes and a
simplified representation of the runtime execution of a multithreaded application. A running
program is identified by a process, which contains at least one thread, also called the main
thread. Such a thread is implicitly created by the compiler or the runtime environment
executing the program. This thread is likely to last for the entire lifetime of the process and
be the origin of other threads, which in general exhibit a shorter duration. As main threads,
these threads can spawn other threads. There is no difference between the main thread and
other threads created during the process lifetime. Each of them has its own local storage and
a sequence of instructions to execute, and they all share the memory space allocated for the
entire process. The execution of the process is considered terminated when all the threads
are completed.

Thread APIs
1 POSIX Threads
2 Threading support in java and .NET

1 POSIX Threads
Portable Operating System Interface for Unix (POSIX) is a set of standards related to

the application programming interfaces for a portable development of applications over the
Unix operating system flavors. Standard POSIX 1.c (IEEE Std 1003.1c-1995) addresses the
implementation of threads and the functionalities that should be available for application
programmers to develop portable multithreaded applications.

Important to remember from a programming point of view is the following:
•A thread identifies a logical sequence of instructions.
•A thread is mapped to a function that contains the sequence of instructions to execute.
•A thread can be created, terminated, or joined.
•A thread has a state that determines its current condition, whether it is executing,

stopped,terminated, waiting for I/O, etc.
•The sequence of states that the thread undergoes is partly determined by the

operating system
scheduler and partly by the application developers.
•Threads share the memory of the process, and since they are executed concurrently,

they needsynchronization structures.
•Different synchronization abstractions are provided to solve different

synchronization problems.
2 Threading support in java and .NET

Languages such as Java and C# provide a rich set of functionalities for multithreaded
programming by using an object-oriented approach. both Java and .NET execute code on
top of a virtual machine, the APIs exposed by the libraries refer to managed or logical
threads. These are mapped to physical threads.

Both Java and .NET provide class Thread with the common operations on threads:
start, stop, suspend, resume, abort, sleep, join, and interrupt. Start and stop/abort are used to
control the lifetime of the thread instance. Suspend and resume are used to
programmatically pause and then continue the execution of a thread. Sleep operation allows
pausing the execution of a thread for a predefined period of time. Join operation that makes
one thread wait until another thread is completed. Waiting states can be interrupted by using
the interrupt operation.

b. Differentiate Aneka thread with local thread with diagram. (06Marks)

The pictures of Aneka thread model and the related normal thread model are given below:

Limitations of Aneka Thread model

• Even though a distributed facility can dramatically increase the degree of parallelism of
applications, its use comes with a cost in term of application design and performance.
• For example, since the different units of work are not executing within the same process
space but on different nodes both the code and the data needs to be moved to a different
execution context.
• the same happens for results that need to be collected remotely and brought back to the
master process.
• Moreover, if there is any communication among the different workers it is necessary to
redesign the communication model eventually by leveraging the APIs provided by the
middleware if any.
• In other words, the transition from a single process multi-threaded execution to a
distributed execution is not transparent and application redesign and re-implementation
are often required.
• The amount of effort required to convert an application often depends on the facilities
offered by the middleware managing the distributed infrastructure.
• Aneka, as a middleware for managing clusters, Grids, and Clouds, provides developers
with advanced capabilities for implementing distributed applications.
• In particular, it takes traditional thread programming a step further. It lets you write
multi-threaded applications in the traditional way, with the added twist that each of these
threads can now be executed outside the parent process and on a separate machine.
• In reality, these “threads” are independent processes executing on different nodes, and
do not share memory or other resources, but they allow you to write applications using
the same thread constructs for concurrency and synchronization as with traditional
threads.
• Aneka threads, as they are called, let you easily port existing multi-threaded compute
intensive applications to distributed versions that can run faster by utilizing multiple
machines simultaneously, with a minimum conversion effort.

c. Explain the programming applications with Aneka thread. (06Marks)

To show how it is possible to quickly port multithreaded application to Aneka threads,
we provide a distributed implementation of the previously discussed examples for local
threads. Aneka threads application model.

The Thread Programming Model is a programming model in which the programmer
creates the units of work as Aneka threads. Therefore, it is necessary to utilize the
AnekaApplicatioN<W,M> class, which is the application reference class for all the
programming models.

The Aneka APIs support different programming models through template
specialization. Hence, to develop distributed applications with Aneka threads, it is necessary
to specialize the template type as follows: AnekaApplication<AnekaThread,
ThreadManager>

These two types are defined in the Aneka.Threading namespace noted in the Aneka.
Threading.dll library of the Aneka SDK. Another important component of the application
model is the Configuration class, which is defined in the Aneka.Entity namespace
(Aneka.dll). This class contains a set of properties that allow the application class to
configure its interaction with the middleware, such as the address of the Aneka index service,
which constitutes the main entry point of Aneka Clouds.

Listing 6.4 demonstrates how to create a simple application instance and configure it to
connect to an Aneka Cloud whose index service is local.

// namespaces containing types of common use using System;
using System.Collections.Generic;
// common Aneka namespaces. using Aneka;
using Aneka.Util; using Aneka.Entity;
// Aneka Thread Programming Model user classes using Aneka.Threading;
///Creates an instance of the Aneka Application configured to use Thread Programming

Model.
/// <returns>Application instance.</returns>
private AnekaApplication<AnekaThread,ThreadManager> CreateApplication();
{
Configuration conf =new Configuration();
// this is the common address and port of a local installation of Aneka Cloud.

conf.SchedulerUri = newUri("tcp://localhost:9090/Aneka"); conf.Credentials
=newUserCredentials("Administrator", string.Empty);

// we will not need support for file transfer, hence we optimize the
// application in order to not require any file transfer service. conf.UseFileTransfer = false;
// we do not need any other configuration setting
// we create the application instance and configure it.

AnekaApplication<AnekaThread,ThreadManager> app =
new AnekaApplication<AnekaThread,ThreadManager>(conf); return app;
}
LISTING 6.4 Application Creation and Configuration.

Listing 6.5 provides a very simple example of how to create Aneka threads.
// continues from the previous listing
///Thread worker method private void WorkerMethod()
{
//
}
///Creates a collection of threads that are executed in the context of given application.
/// <param name="app">>Application instance.</param>
private void CreateThreads(AnekaApplication<AnekaThread,ThreadManager> app);
{
// creates a delegate to the method to execute inside the threads.
ThreadStart worker = newThreadStart(this.WorkerMethod);
// iterates over a loop and creates ten threads.
for(int i=0; i<10; i++)
{
AnekaThread thread = new AnekaThread(worker, app); thread.Start();
}
}

OR
6.

a. Explain the features of workflow applications with task dependencies. (10 Marks)

Workflow applications are characterized by a collection of tasks that exhibit

dependencies among them. Such dependencies, which are mostly data dependencies
determine the way in which the applications are scheduled as well as where they are
scheduled.

What is a workflow?
A workflow is the automation of a business process, in whole or part, during which

documents, information, or tasks are passed from one participant (a resource; human or
machine) to another for action, according to a set of procedural rules.

The concept of workflow as a structured execution of tasks that have dependencies on
each other has demonstrated itself to be useful for expressing many scientific experiments
and gave birth to the idea of scientific workflow. In the case of scientific workflows, the
process is identified by an application to run, the elements that are passed among
participants are mostly tasks and data, and the participants are mostly computing or storage
nodes. The set of procedural rules is defined by a workflow definition scheme that guides
the scheduling of the application.

A scientific workflow generally involves data management, analysis, simulation, and
middleware supporting the execution of the workflow. A scientific workflow is generally
expressed by a directed acyclic graph (DAG), which defines the dependencies among tasks
or operations. The nodes on the DAG represent the tasks to be executed in a workflow
application; the arcs connecting the nodes identify the dependencies among tasks and the
data paths that connect the tasks.

The most common dependency that is realized through a DAG is data dependency,
which means that the output files of a task constitute the input files of another task. The
DAG in Figure 7.6 describes a sample Montage workflow. Montage is a toolkit for
assembling images into mosaics; it has been specially designed to support astronomers in
composing the images taken from different telescopes or points of view into a coherent
image. The workflow depicted in Figure 7.6 describes the general process for composing a
mosaic; the labels on the right describe the different tasks that have to be performed to
compose a mosaic.

In the case presented in the diagram, a mosaic is composed of seven images. For each
of the image files, the following process has to be performed: image file transfer,
reprojection, calculation of the difference, and common plane placement. Therefore, each of
the images can be processed in parallel for these tasks.

2 Workflow technologies
Business-oriented computing workflows are defined as compositions of services.

There are specific languages and standards for the definition of workflows, such as Business

Process Execution Language (BPEL). An abstract reference model for a workflow
management system, as depicted in Figure 7.7. Design tools allow users to visually compose
a workflow application.

This specification is stored in the form of an XML document based on a specific
workflow language and constitutes the input of the workflow engine, which controls the
execution of the workflow by leveraging a distributed infrastructure. The workflow engine
is a client- side component that might interact directly with resources or with one or several
middleware components for executing the workflow.

b. List and explain popular framework for task computing. (10 Marks)

Some popular software systems that support the task-computing framework are:
1. Condor
2. Globus Toolkit
3. Sun Grid Engine (SGE)
4. BOINC
5. Nimrod/G
Architecture of all these systems is similar to the general reference architecture

depicted in Figure 7. They consist of two main components: a scheduling node (one or more)
and worker nodes. The organization of the system components may vary.

1. Condor
Condor is the most widely used and long-lived middleware for managing clusters,

idle workstations, and a collection of clusters. Condor supports features of batch-queuing
systems along with the capability to checkpoint jobs and manage overload nodes. It provides
a powerful job resource-matching mechanism, which schedules jobs only on resources that
have the appropriate runtime environment. Condor can handle both serial and parallel jobs
on a wide variety of resources.

It is used by hundreds of organizations in industry, government, and academia to
manage infrastructures. Condor-G is a version of Condor that supports integration with grid
computing resources, such as those managed by Globus.

2. Globus Toolkit
The Globus Toolkit is a collection of technologies that enable grid computing. It

provides a comprehensive set of tools for sharing computing power, databases, and other
services across corporate, institutional, and geographic boundaries. The toolkit features
software services, libraries, and tools for resource monitoring, discovery, and management
as well as security and file management. The toolkit defines a collection of interfaces and
protocol for interoperation that enable different systems to integrate with each other and
expose resources outside their boundaries.

3. Sun Grid Engine (SGE)
Sun Grid Engine (SGE), now Oracle Grid Engine, is middleware for workload and

distributed resource management. Initially developed to support the execution of jobs on
clusters, SGE integrated additional capabilities and now is able to manage heterogeneous
resources and constitutes middleware for grid computing.

It supports the execution of parallel, serial, interactive, and parametric jobs and
features advanced scheduling capabilities such as budget-based and group- based scheduling,
scheduling applications that have deadlines, custom policies, and advance reservation.

4. BOINC
Berkeley Open Infrastructure for Network Computing (BOINC) is framework for

volunteer and grid computing. It allows us to turn desktop machines into volunteer
computing nodes that are leveraged to run jobs when such machines become inactive.
BOINC supports job check pointing and duplication. BOINC is composed of two main
components: the BOINC server and the BOINC client. The BOINC server is the central
node that keeps track of all the available resources and scheduling jobs.

The BOINC client is the software component that is deployed on desktop machines
and that creates the BOINC execution environment for job submission. BOINC systems can
be easily set up to provide more stable support for job execution by creating computing
grids with dedicated machines. When installing BOINC clients, users can decide the
application project to which they want to donate the CPU cycles of their computer.
Currently several projects, ranging from medicine to astronomy and cryptography, are
running on the BOINC infrastructure.

5. Nimrod/G
Tool for automated modeling and execution of parameter sweep applications over

global computational grids. It provides a simple declarative parametric modeling language
for expressing parametric experiments. It uses novel resource management and scheduling
algorithms based on economic principles.

It supports deadline- and budget-constrained scheduling of applications on distributed
grid resources to minimize the execution cost and at the same deliver results in a timely
manner. It has been used for a very wide range of applications over the years, ranging from
quantum chemistry to policy and environmental impact.

Module 4

7.
a. What is Data Intensive Computing? List all the challenges in data intensive computing and

explain each in detail. (10 Marks)

Data-intensive computing is concerned with production, manipulation, and analysis
of large-scale data in the range of hundreds of megabytes (MB) to petabytes (PB) and
beyond. Dataset is commonly used to identify a collection of information elements that is
relevant to one or more applications. Datasets are often maintained in repositories, which are
infrastructures supporting the storage, retrieval, and indexing of large amounts of
information.

To facilitate classification and search, relevant bits of information, called metadata,
are attached to datasets. Data-intensive computations occur in many application domains.
Computational science is one of the most popular ones. People conducting scientific
simulations and experiments are often keen to produce, analyze, and process huge volumes
of data. Hundreds of gigabytes of data are produced every second by telescopes mapping the
sky; the collection of images of the sky easily reaches the scale of petabytes over a year.

Bioinformatics applications mine databases that may end up containing terabytes of
data. Earthquake simulators process a massive amount of data, which is produced as a result
of recording the vibrations of the Earth across the entire globe.

Characterizing data-intensive computations
Challenges ahead

Historical perspective
1 The early age: high-speed wide-area networking 2 Data grids
3 Data clouds and “Big Data”
4 Databases and data-intensive computing

Characterizing data-intensive computations
Data-intensive applications deals with huge volumes of data, also exhibit compute-

intensive properties. Figure 8.1 identifies the domain of data-intensive computing in the two
upper quadrants of the graph. Data-intensive applications handle datasets on the scale of
multiple terabytes and petabytes.

b. Explain Amazon Dynamo architecture that support data intensive applications. (10 Marks)

The main goal of Dynamo is to provide an incrementally scalable and highly
available storage system. This goal helps in achieving reliability at a massive scale, where
thousands of servers and network components build an infrastructure serving 10 million
requests per day. Dynamo provides a simplified interface based on get/put semantics, where
objects are stored and retrieved with a unique identifier (key).

The architecture of the Dynamo system, shown in Figure 8.3, is composed of a
collection of storage peers organized in a ring that shares the key space for a given
application. The key space is partitioned among the storage peers, and the keys are
replicated across the ring, avoiding adjacent peers. Each peer is configured with access to a
local storage facility where original objects and replicas are stored.

Each node provides facilities for distributing the updates among the rings and to
detect failures and unreachable nodes.

OR

8.
a. Explain the following: i) IBM General Parallel File System ii) Google File System iii)

Amazon Simple Storage Service. (10 Marks)

i) IBM General Parallel File System

GPFS is the high-performance distributed file system developed by IBM that provides
support for the RS/6000 supercomputer and Linux computing clusters. GPFS is a multiplatform
distributed file system built over several years of academic research and provides advanced
recovery mechanisms. GPFS is built on the concept of shared disks, in which a collection of
disks is attached to the file system nodes by means of some switching fabric. The file system
makes this infrastructure transparent to users and stripes large files over the disk array by
replicating portions of the file to ensure high availability.

ii) Google File System

GFS is the storage infrastructure that supports the execution of distributed applications in
Google’s computing cloud.

GFS is designed with the following assumptions:
1. The system is built on top of commodity hardware that often fails.
2. The system stores a modest number of large files; multi-GB files are common and should be

treated efficiently, and small files must be supported, but there is no need to optimize for that.
3. The workloads primarily consist of two kinds of reads: large streaming reads and small

random reads.
4. The workloads also have many large, sequential writes that append data to files.
5. High-sustained bandwidth is more important than low latency.

The architecture of the file system is organized into a single master, which contains the
metadata of the entire file system, and a collection of chunk servers, which provide storage space.
From a logical point of view the system is composed of a collection of software daemons, which
implement either the master server or the chunk server.

iii) Amazon Simple Storage Service

Amazon S3 is the online storage service provided by Amazon. The system offers a
flat storage space organized into buckets, which are attached to an Amazon Web Services

(AWS) account. Each bucket can store multiple objects, each identified by a unique key.
Objects are identified by unique URLs and exposed through HTTP, thus allowing very
simple get-put semantics.

b. Design and implement an application for log parsing, Mapper and Reducer with Aneka map
Reduce. (10 Marks)

Aneka components produce a lot of information that is stored in the form of log files.
In this example, we parse these logs to extract useful information about the execution

of applications and the usage of services in the Cloud.
The entire framework leverages the log4net library for collecting and storing the log

information. Some examples of formatted log messages are:

15 Mar 2011 10:30:07 DEBUGSchedulerService: . . . HandleSubmitApplicationSchedulerService: . . .
15 Mar 2011 10:30:07 INFOSchedulerService: Scanning candidate storage . . .
15 Mar 2011 10:30:10 INFOAdded [WU: 51d55819-b211-490f-b185-8a25734ba705,
4e86fd02. . .
15 Mar 2011 10:30:10 DEBUGStorageService:NotifySchedulerSending FileTransferMessage. . .
15 Mar 2011 10:30:10 DEBUGIndependentSchedulingService:QueueWorkUnitQueueing. . .
15 Mar 2011 10:30:10 INFOAlgorithmBase::AddTasks[64] Adding 1 Tasks 15 Mar 2011 10:30:10
DEBUGAlgorithmBase:FireProvisionResourcesProvision

Possible information that we might want to extract from such logs is the following:
 The distribution of log messages according to the level
 The distribution of log messages according to the components

This information can be easily extracted and composed into a single view by creating Mapper
tasks that count the occurrences of log levels and component names and emit one simple key-value
pair in the form (level-name, 1) or (component-name, 1) for each of the occurrences. The Reducer
task will simply sum up all the key-value pairs that have the same key. For both problems, the
structure of the map and reduce functions will be the following:

map: (long; string) => (string; long)
reduce: (long; string) => (string; long)

The Mapper class will then receive a key-value pair containing the position of the line inside
the file as a key and the log message as the value component. It will produce a key-value pair
containing a string representing the name of the log level or the component name and 1 as value. The
Reducer class will sum up all the key-value pairs that have the same name.

Module 5

9.
a. Describe the core components of Google App Engine. (10 Marks)

Google AppEngine is a PaaS implementation
Distributed and scalable runtime environment that leverages Google’s distributed

infrastructure to scale out applications.
Architecture and core concepts

AppEngine is a platform for developing scalable applications accessible through the Web.
Figure 9.2. The platform is logically divided into four major components: infrastructure, the runtime
environment, the underlying storage, and the set of scalable services.

1 Infrastructure
AppEngine hosts Web applications, and its primary function is to serve users requests

efficiently. AppEngine’s infrastructure takes advantage of many servers available within Google
data centers. For each HTTP request, AppEngine locates the servers hosting the application that
processes the request, evaluates their load, and, if necessary, allocates additional resources or
redirects the request to an existing server. The infrastructure is also responsible for monitoring
application performance and collecting statistics on which the billing is calculated.

2 Runtime environment
The runtime environment represents the execution context of applications hosted on

AppEngine. Sandboxing- One of the major responsibilities of the runtime environment is to provide
the application environment with an isolated and protected context in which it can execute without
causing a threat to the server and without being influenced by other applications. In other words, it
provides applications with a sandbox. If an application tries to perform any operation that is
considered potentially harmful, an exception is thrown and the execution is interrupted. Supported
runtimes- Currently, it is possible to develop AppEngine applications using three different languages
and related technologies: Java, Python, and Go. AppEngine currently supports Java 6, and
developers can use the common tools for Web application development in Java, such as the Java
Server Pages (JSP), and the applications interact with the environment by using the Java Servlet
standard.

Support for Python is provided by an optimized Python 2.5.2 interpreter. As with Java, the
runtime environment supports the Python standard library. Developers can use a specific Python
Web application framework, called webapp, simplifying the development of Web applications. The
Go runtime environment allows applications developed with the Go programming language to be
hosted and executed in AppEngine. Currently the release of Go that is supported by AppEngine is
r58.1. The SDK includes the compiler and the standard libraries for developing applications in Go
and interfacing it with AppEngine services.

3 Storage
AppEngine provides various types of storage, which operate differently depending on the

volatility of the data. Static file servers- Web applications are composed of dynamic and static data.
Dynamic data are a result of the logic of the application and the interaction with the user. Static data
often are mostly constituted of the components that define the graphical layout of the application or
data files. DataStore- DataStore is a service that allows developers to store semi-structured data. The
service is designed to scale and optimized to quickly access data. DataStore can be considered as a
large object database in which to store objects that can be retrieved by a specified key. DataStore
imposes less constraint on the regularity of the data but, at the same time, does not implement some
of the features of the relational model. The underlying infrastructure of DataStore is based on
Bigtable, a redundant, distributed, and semistructured data store that organizes data in the form of
tables.

DataStore provides high-level abstractions that simplify interaction with Bigtable. Developers
define their data in terms of entity and properties, and these are persisted and maintained by the
service into tables in Bigtable. DataStore also provides facilities for creating indexes on data and to
update data within the context of a transaction. Indexes are used to support and speed up queries. A
query can return zero or more objects of the same kind or simply the corresponding keys.

4 Application services

Applications hosted on AppEngine take the most from the services made available through
the runtime environment. These services simplify most of the common operations that are performed
in Web applications UrlFetch - The sandbox environment does not allow applications to open
arbitrary connections through sockets, but it does provide developers with the capability of retrieving
a remote resource through HTTP/HTTPS by means of the UrlFetch service. Applications can make
synchronous and asynchronous Web requests and integrate the resources obtained in this way into
the normal request- handling cycle of the application.

UrlFetch is not only used to integrate meshes into a Web page but also to leverage remote
Web services in accordance with the SOA reference model for distributed applications. MemCache-
This is a distributed in-memory cache that is optimized for fast access and provides developers with
a volatile store for the objects that are frequently accessed. The caching algorithm implemented by
MemCache will automatically remove the objects that are rarely accessed. The use of MemCache
can significantly reduce the access time to data; developers can structure their applications so that
each object is first looked up into MemCache and if there is a miss, it will be retrieved from
DataStore and put into the cache for future lookups.

Mail and instant messaging- AppEngine provides developers with the ability to send and
receive mails through Mail. The service allows sending email on behalf of the application to specific
user accounts. It is also possible to include several types of attachments and to target multiple
recipients. AppEngine provides also another way to communicate with the external world: the
Extensible Messaging and Presence Protocol (XMPP). Any chat service that supports XMPP, such
as Google Talk, can send and receive chat messages to and from the Web application, which is
identified by its own address.

Account management- AppEngine simplifies account management by allowing developers to
leverage Google account management by means of Google Accounts. Using Google Accounts, Web
applications can conveniently store profile settings in the form of key-value pairs, attach them to a
given Google account, and quickly retrieve them once the user authenticates.

5 Compute services
AppEngine offers additional services such as Task Queues and Cron Jobs that simplify the

execution of computations. Task queues- A task is defined by a Web request to a given URL, and the
queue invokes the request handler by passing the payload as part of the Web request to the handler.
It is the responsibility of the request handler to perform the “task execution,” which is seen from the
queue as a simple Web request. Cron jobs- the required operation needs to be performed at a specific
time of the day, which does not coincide with the time of the Web request. In this case, it is possible
to schedule the required operation at the desired time by using the Cron Jobs service.

b. Explain the Windows Azure platform architecture. (10 Marks)

Microsoft Windows Azure is a cloud operating system built on top of Microsoft
datacenters’ infrastructure and provides developers with a collection of services for building
applications with cloud technology.

Services range from compute, storage, and networking to application connectivity,
access control, and business intelligence. Figure 9.3 provides an overview of services
provided by Azure. These services can be managed and controlled through the Windows
Azure Management Portal, which acts as an administrative console for all the services.

Azure core concepts
The Windows Azure platform is made up of a foundation layer and a set of developer

services that can be used to build scalable applications. These services cover compute,
storage, networking, and identity management, which are tied together by middleware called
AppFabric.
1 Compute services

Compute services are the core components of Microsoft Windows Azure, and they
are delivered by means of the abstraction of roles. Currently, there are three different roles:
Web role, Worker role, and Virtual Machine (VM) role.
Web role - The Web role is designed to implement scalable Web applications. Web roles
represent the units of deployment of Web applications within the Azure infrastructure. They
are hosted on the IIS 7 Web Server. Since version 3.5, the .NET technology natively
supports Web roles; developers can directly develop their applications in Visual Studio, test
them locally, and upload to Azure. Web roles can be used to run and scale PHP Web
applications on Azure (CGI Web Role).
Worker role - Worker roles are designed to host general compute services on Azure. They
can be used to quickly provide compute power or to host services that do not communicate
with the external world through HTTP. A common practice for Worker roles is to use them
to provide background processing for Web applications developed with Web roles.

A Worker role runs continuously from the creation of its instance until it is shut down.
The Azure SDK provides developers with convenient APIs and libraries that allow
connecting the role with the service provided by the runtime and easily controlling its
startup as well as being notified of changes in the hosting environment.
Virtual machine role - The Virtual Machine role allows developers to control computing
stack of their compute service by defining a custom image of the Windows Server 2008 R2
operating system and all the service stack required by their applications. The Virtual
Machine role is based on the Windows Hyper-V virtualization technology.

Developers can image a Windows server installation complete with all the required
applications and components, save it into a Virtual Hard Disk (VHD).
2 Storage services

Compute resources are equipped with local storage in the form of a directory on the
local file system. Windows Azure provides different types of storage solutions that
complement compute services with a more durable and redundant option.
Blobs

Azure allows storing large amount of data in the form of binary large objects (BLOBs)
by means of the blobs service.
Block blobs - Block blobs are composed of blocks and are optimized for sequential access;

therefore they are appropriate for media streaming. Currently, blocks are of 4 MB, and a
single block blob can reach 200 GB in dimension.
Page blobs - Page blobs are made of pages that are identified by offset from beginning of
blob. A page blob can be split into multiple pages or constituted of single page. This type of
blob is optimized for random access and can be used to host data different from streaming.
Maximum dimension of page blob can be 1TB.
Azure drive

Page blobs can be used to store an entire file system in the form of a single Virtual
Hard Drive (VHD) file. This can then be mounted as a part of the NTFS file system by
Azure compute resources, thus providing persistent and durable storage.
Tables

Tables constitute a semistructured storage solution, allowing users to store
information in the form of entities with a collection of properties. Entities are stored as rows
in the table and are identified by a key, which also constitutes the unique index built for the
table. Users can insert, update, delete, and select a subset of the rows stored in the table.

Currently, a table can contain up to 100 TB of data, and rows can have up to 255
properties, with a maximum of 1 MB for each row. The maximum dimension of a row key
and partition keys is 1 KB.
Queues

Queue storage allows applications to communicate by exchanging messages through
durable queues, thus avoiding lost or unprocessed messages. Applications enter messages
into a queue, and other applications can read them in a first-in, first-out (FIFO) style.

3 Core infrastructure: AppFabric
AppFabric is a comprehensive middleware for developing, deploying, and managing

applications on the cloud or for integrating existing applications with cloud services.
AppFabric implements an optimized infrastructure supporting scaling out and high

availability; sandboxing and multitenancy; state management; and dynamic address resolution
and routing.
Access control - AppFabric provides the capability of encoding access control to resources in
Web applications and services into a set of rules that are expressed outside the application code
base. These rules give a great degree of flexibility in terms of the ability to secure components of
the application and define access control policies for users and groups.
Service bus - Service Bus constitutes the messaging and connectivity infrastructure provided
with AppFabric for building distributed and disconnected applications The service is designed to
allow transparent network traversal and to simplify the development of loosely coupled
applications, without renouncing security and reliability and letting developers focus on the logic
of the interaction rather than the details of its implementation. Service Bus allows services to be
available by simple URLs, which are untied from their deployment location.
Azure cache -Windows Azure provides a set of durable storage solutions that allow applications
to persist their data. Azure Cache is a service that allows developers to quickly access data
persisted on Windows Azure storage or in SQL Azure. The service implements a distributed in-
memory cache of which the size can be dynamically adjusted by applications according to their
needs.

4 Other services
Windows Azure virtual network - Networking services for applications are offered under the
name Windows Azure Virtual Network, which includes Windows Azure Connect and Windows
Azure Traffic Manager. Windows Azure Connect allows easy setup of IP-based network
connectivity among machines hosted on the private premises and the roles deployed on the Azure
Cloud. This service is particularly useful in the case of VM roles.
Windows Azure content delivery network - Windows Azure Content Delivery Network (CDN)
is the content delivery network solution that improves the content delivery capabilities of
Windows Azure Storage and several other Microsoft services, such as Microsoft Windows
Update and Bing maps.

OR
10.

a. Discuss in detail the following media applications of cloud computing technologies.
i) Animoto ii) Maya Rendering with Aneka iii) Video encoding on cloud. (12 Marks)

i) Animoto
Animoto is the most popular example of media applications on the cloud. The Website

provides users with a very straightforward interface for quickly creating videos out of images, music,
and video fragments submitted by users. Users select a specific theme for a video, upload the photos
and videos and order them in the sequence they want to appear, select the song for the music, and
render the video. The process is executed in the background and the user is notified via email once the
video is rendered.

A proprietary artificial intelligence (AI) engine, which selects the animation and transition
effects according to pictures and music, drives the rendering operation. Users only have to define the
storyboard by organizing pictures and videos into the desired sequence.

The infrastructure of Animoto is complex and is composed of different systems that all need to
scale (Figure 10.8). The core function is implemented on top of the Amazon Web Services
infrastructure. It uses Amazon EC2 for the Web front-end and worker nodes; Amazon S3 for the
storage of pictures, music, and videos; and Amazon SQS for connecting all the components. The
system’s auto-scaling capabilities are managed by Rightscale, which monitors the load and
controls the creation of new worker instances.

ii) Maya Rendering with Aneka

A private cloud solution for rendering train designs has been implemented by the engineering
department of GoFront group, a division of China Southern Railway (Figure 10.9). The department is
responsible for designing models of high-speed electric locomotives, metro cars, urban transportation
vehicles, and motor trains. The design process for prototypes requires high-quality, three-dimensional
(3D) images. The analysis of these images can help engineers identify problems and correct their
design.

Three-dimensional rendering tasks take considerable amounts of time, especially in the case of
huge numbers of frames, but it is critical for the department to reduce the time spent in these iterations.
This goal has been achieved by leveraging cloud computing technologies, which turned the network of
desktops in the department into a desktop cloud managed by Aneka.

iii) Video encoding on cloud

Video encoding and transcoding are operations that can greatly benefit from using cloud
technologies: They are computationally intensive and potentially require considerable amounts of
storage.

Encoding.com is a software solution that offers video-transcoding services on demand and
leverages cloud technology to provide both the horsepower required for video conversion and the
storage for staging videos. The service integrates with both Amazon Web Services technologies (EC2,
S3, and CloudFront) and Rackspace (Cloud Servers, Cloud Files, and Limelight CDN access).

To use the service, users have to specify the location of the video to transcode, the destination
format, and the target location of the video. Encoding.com also offers other video-editing operations
such as the insertion of thumbnails, watermarks, or logos. Moreover, it extends its capabilities to audio
and image conversion.

b. Explain in detail about the application of cloud computing in satellite Image processing.
(08 Marks)

Geoscience applications collect, produce, and analyze massive amounts of geospatial
and nonspatial data. As the technology progresses and our planet becomes more
instrumented, volume of data that needs to be processed increases significantly. Geographic
information system (GIS) applications capture, store, manipulate, analyze, manage, and
present all types of geographically referenced data. Cloud computing is an attractive option
for executing these demanding tasks and extracting meaningful information to support
decision makers.

Satellite remote sensing generates hundreds of gigabytes of raw images that need to
be further processed to become the basis of several different GIS products. This process
requires both I/O and compute-intensive tasks. Large images need to be moved from a
ground station’s local storage to compute facilities, where several transformations and
corrections are applied.

The system shown in Figure 10.4 integrates several technologies across the entire
computing stack. A SaaS application provides a collection of services for such tasks as
geocode generation and data visualization. At the PaaS level, Aneka controls the importing
of data into the virtualized infrastructure and the execution of image-processing tasks that
produce the desired outcome from raw satellite images. The platform leverages a Xen
private cloud and the Aneka technology to dynamically provision the required resources.

* * * * *

