

USN

Internal Assessment Test 1 – April 2023

Sub: Operating System Sub Code: 18 EC 641 Branch: ECE

Date: 25-04-23 Duration: 90 min’s Max Marks: 50 Sem / Sec: 6 – A B C D OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. Define Operating System? What are the goals of Operation systems? Explain the

key concern of an operating system.

[10] CO1 L1

2. Explain partition based & pool based resource allocation strategies with a neat

diagram.

[10] CO1 L2

3a. Explain the measures of Efficiency, System Performance and User Service [06] CO1 L1

3b. Discuss in brief about the benefits of Distributed Operating Systems [04] CO1 L1

4. Explain important properties of Time sharing processing and Real Time OS with

neat sketch and explain their advantages and Disadvantages.

[10] CO1 L2

5. Explain briefly, the different classes of an OS with primary concern and key

concepts.

[10] CO1 L1

6a. With a neat diagram explain the turnaround time in batch processing system. [06] CO1 L2

6b. Discuss various computations in an operating system. [04] CO1 L2

7 Explain the state transition for a process with state transition diagram [10] CO2 L1

SCHEME OF VALUATION

Q.
no.

Questions Marks

1. Definition 2M

 Goals & Key Concerns of an OS 8M

2. Partition based resource allocation strategy with diagram 5M

 Pool based resource allocation strategy with diagram 5M

3a. Efficiency, System Performance and User Service 6M

3b. Benefits of Distributed Operating Systems 4M

4. Time sharing system Properties and explanation 5M

 Real time system OS Properties and explanation 5M

5. Classes of Operating system 6M

 Primary concerns and key concepts 4M

6a. Turnaround Time in Batch processing system 6M

6b. Various Computations in an OS 4M

7. State Transition for a process diagram 6M

 Explanation 4M

IAT-1 SOLUTION
Q.
no.

Solution Marks

1. Definition

2M

 Goals & Key Concerns of an OS

With Key Concerns of an OS

8M

2. Partition based resource allocation strategy with diagram

Two resource allocation strategies are popular. In the resource partitioning

approach, the OS decides a priori what resources should be allocated to each

user program, for example, it may decide that a program should be allocated

1 MB of memory, 1000 disk blocks, and a monitor. It divides the resources in the

system into many resource partitions, or simply partitions; each partition

includes 1 MB of memory, 1000 disk blocks, and a monitor. It allocates one

resource partition to each user program when its execution is to be initiated. To

facilitate resource allocation, the resource table contains entries for resource

partitions rather than for individual resources as in Table 1.3. Resource

partitioning is simple to implement, hence it incurs less overhead; however, it

lacks flexibility. Resources are wasted if a resource partition contains more

resources than what a program needs. Also, the OS cannot execute a program if its

requirements exceed the resources available in a resource partition. This is true

even if free resources exist in another partition.

5M

 Pool based resource allocation strategy with diagram

In the pool-based approach to resource management, the OS allocates resources

from a common pool of resources. It consults the resource table when

5M

a program makes a request for a resource, and allocates the resource if it is free.

It incurs the overhead of allocating and deallocating resources when requested.

However, it avoids both problems faced by the resource partitioning approach—

an allocated resource is not wasted, and a resource requirement can be met if a

free resource exists.

3a. Efficiency, System Performance and User Service

6M

3b. Benefits of Distributed Operating Systems

A distributed operating system permits a user to access resources located in other

computer systems conveniently and reliably. To enhance convenience, it does not

expect a user to know the location of resources in the system, which is called

transparency. To enhance efficiency, it may execute parts of a computation in

different computer systems at the same time. It uses distributed control; i.e., it

spreads its decision-making actions across different computers in the system so

that failures of individual computers or the network does not cripple its

operation.

4M

4. Time sharing system Properties and explanation

In an interactive computing environment, a user submits a computational

requirement—a subrequest—to a process and examines its response on the

monitor screen. A time-sharing operating system is designed to provide a quick

response to subrequests made by users. It achieves this goal by sharing the CPU

time among processes in such a way that each process to which a subrequest has

been made would get a turn on the CPU without much delay.

The scheduling technique used by a time-sharing kernel is called round-robin

scheduling with time-slicing. It works as follows (see Figure 3.6): The kernel

5M

maintains a scheduling queue of processes that wish to use the CPU; it always

schedules the process at the head of the queue. When a scheduled process

completes servicing of a subrequest, or starts an I/O operation, the kernel

removes it from the queue and schedules another process. Such a process would

be added at the end of the queue when it receives a new subrequest, or when its

I/O operation completes. This arrangement ensures that all processes would

suffer comparable delays before getting to use the CPU. However, response times

of processes would degrade if a process consumes too much CPU time in servicing

its subrequest. The kernel uses the notion of a time slice to avoid this situation.

We use the notation δ for the time slice.

If the time slice elapses before the process completes servicing of a subrequest,

the kernel preempts the process, moves it to the end of the scheduling queue, and

schedules another process. The preempted process would be rescheduled when it

reachesthe head ofthe queue once again. Thus, a process may haveto be scheduled

several times before it completes servicing of a subrequest. The kernel employs a

timer interrupt to implement time-slicing

 Real time system OS Properties and explanation

n a class of applications called real-time applications, users need the computer to

perform some actions in a timely manner to control the activities in an external

system, or to participate in them. The timeliness of actions is determined by

he time constraints of the external system. Accordingly, we define a real-time

application as follows:

If the application takes too long to respond to an activity, a failure can

occur in the external system. We use the term response requirement of a system

to indicate the largest value of response time for which the system can function

perfectly; a timely response is one whose response time is not larger than the

response requirement of the system.

Consider a system that logs data received from a satellite remote sensor.

The satellite sends digitized samples to the earth station at the rate of 500

samples

per second. The application process is required to simply store these samples in

a file. Since a new sample arrives every two thousandth of a second, i.e., every

2 ms, the computer must respond to every “store the sample” request in less than

2 ms, or the arrival of a new sample would wipe out the previous sample in the

computer’s memory. This system is a real-time application because a sample must

be stored in less than 2 ms to prevent a failure. Its response requirement is 1.99

ms.

The deadline of an action in a real-time application is the time by which the action

should be performed. In the current example, if a new sample is received from

the satellite at time t, the deadline for storing it on disk is t + 1.99 ms.

Examples of real-time applications can be found in missile guidance, command

and control applications like process control and air traffic control, data

5M

sampling and data acquisition systems like display systems in automobiles,

multimedia systems, and applications like reservation and banking systems that

employ large databases. The response requirements of these systems vary from a

few microseconds or milliseconds for guidance and control systems to a few

seconds for reservation and banking systems.

5. Classes of Operating system

Batch Processing

Multiprogramming

Time Sharing

Real Time

Distributed

2M

 Primary concerns and key concepts

Classes of operating systems have evolved over time as computer systems and

users’ expectations of them have developed; i.e., as computing environments have

evolved. As we study some of the earlier classes of operating systems, we need

to understand that each was designed to work with computer systems of its own

historical period; thus we will have to look at architectural features

representative of computer systems of the period.

With Explanation

8M

6a. Turnaround Time in Batch processing system

A batch is a sequence of user jobs formed for processing by the operating system.

A computer operator formed a batch by arranging a few user jobs in a sequence

and inserting special marker cards to indicate the start and end of the batch.

When the operator gave a command to initiate processing of a batch, the batching

kernel set up the processing of the first job of the batch. At the end of the job, it

initiated execution of the next job, and so on, until the end of the batch. Thus the

operator had to intervene only at the start and end of a batch

6M

6b. Various Computations in an OS

A computing environment consists of a computer system, its interfaces with other

systems, and the services provided by its operating system to its users and their

programs. Computing environments evolve continuously to provide better quality

of service to users; however, the operating system has to perform more com

plex tasks as computer systems become more powerful, their interfaces with I/O

devices and with other computer systems become more complex, and its users

demand new services.

4M

7. State Transition for a process diagram

Process state The indicator that describes the nature of the current activity of a

process. The kernel uses process states to simplify its own functioning, so the

number of process states and their names may vary across OSs. However, most

Oss use the four fundamental states described in Table 5.3. The kernel considers

a process to be in the blocked state if it has made a resource request and the

request is yet to be granted, or if it is waiting for some event to occur. A CPU

should not be allocated to such a process until its wait is complete. The kernel

would change the state of the process to ready when the request is granted

or the event for which it is waiting occurs. Such a process can be considered

for scheduling. The kernel would change the state of the process to running

when it is dispatched. The state would be changed to terminated when execution

of the process completes or when it is aborted by the kernel for some

reason. A conventional computer system contains only one CPU, and so at most

one process can be in the running state. There can be any number of processes

in the blocked, ready, and terminated states. An OS may define more process

states to simplify its own functioning or to support additional functionalities like

swapping.

6M

 Explanation

Process State Transitions A state transition for a process Pi is a change in its

state. A state transition is caused by the occurrence of some event such as the

start or end of an I/O operation. When the event occurs, the kernel determines

its influence on activities in processes, and accordingly changes the state of an

affected process.

When a process Pi in the running state makes an I/O request, its state has to

be changed to blocked until its I/O operation completes. At the end of the I/O

operation, Pi’s state is changed from blocked to ready because it now wishes to

use the CPU. Similar state changes are made when a process makes some request

that cannot immediately be satisfied by the OS. The process state is changed to

blocked when the request is made, i.e., when the request event occurs, and it is

changed to ready when the request is satisfied. The state of a ready process is

changed to running when it is dispatched, and the state of a running process is

changed to ready when it is preempted either because a higher-priority process

became ready or because its time slice elapsed (see Sections 3.5.1 and 3.6). Table

5.4 summarizes causes of state transitions.

Figure 5.4 diagrams the fundamental state transitions for a process. A new

process is put in the ready state after resources required by it have been

allocated.

It may enter the running, blocked, and ready states a number of times as a result

of events described in Table 5.4. Eventually it enters the terminated state.

4M

