$\mathsf{CMR}\ \mathsf{CMR}\ \mathsf{S}$ INSTITUTE OF USN **TECHNOLOGY**

Internal Assesment Test - II

Marks

OBE

CMR

1. FM single tone

Frequency modulation is a process of allting the frequency of

\nCaarter Aignal in accordance with the instantaneous values of

\nmeasage Aif and by keephog amplitude appears of Gimier Graphs.

\nTime domain expression:

\n\n- Let the instantaneous Value of carries Aif and is
\n- $$
C(t) = A_C \cos(\theta) + \frac{1}{2} \cos(\theta)
$$
\n- Let the hadantrace of a line
\n- $C(t) = A_C \cos(\theta) + \frac{1}{2} \cos(\theta)$
\n- Let the fundamental Value of message Aif and 1s
\n- $m(t) = A_m \cos(\theta) + \frac{1}{2} \cos(\theta)$
\n- We know that the Sif and equation of -Angle modulated wave
\n- Use known that the instantaneous frequency of $f_1(t)$ of $f_2(t)$
\n- We know that the first derivative of $f_1(t) = f_2 + k \cdot f_1(t)$
\n- where, $k_1 = \text{frequency} \cdot \text{Sorsifiivity}$
\n- $m(t) = \text{message} \cdot \text{signal}$
\n- where, $k_1 = \text{frequency} \cdot \text{Sorsifiivity}$
\n- $m(t) = \text{message} \cdot \text{signal}$
\n- Let know that the -Angular frequency, $w_1(t) = \frac{d}{dt} \cdot \text{G} \cdot (t)$
\n- and $w_1(t) = \frac{d}{dt} \cdot \text{G} \cdot (t)$
\n- Therefore, $f_1(t) = \frac{d}{dt} \cdot \text{G} \cdot (t)$
\n- So, $f_1(t) = \frac{1}{2} \cdot \frac{d}{dt} \cdot \text{G} \cdot (t)$
\n- So, $f_1(t) = \frac{1}{2} \cdot \frac{d}{dt} \cdot \text{G} \cdot (t)$
\n

r,

$$
f_{c} + k_{f} m(t) = \frac{1}{3\pi} \frac{d}{dt} \delta_{1}(t)
$$
\n
$$
\frac{d}{dt} \delta_{1}(t) = a \pi f_{c} + 9 \pi k_{f} m(t) - (6)
$$
\n
$$
-Apply Integral on both sides of equation (6) key.
$$
\n
$$
\int \frac{d}{dt} \delta_{1}(t) = \int [a \pi f_{c} + a \pi k_{f} m(t)] dt
$$
\n
$$
\int \frac{d}{dt} \delta_{1}(t) = 3 \pi f_{c} + 4 \pi k_{f} \int m(t) dt
$$
\n
$$
\frac{d}{dt} \delta_{1}(t) = 3 \pi f_{c} + 4 \pi k_{f} \int m(t) dt
$$
\n
$$
\frac{d}{dt} \delta_{1}(t) = A_{c} \cos \theta_{1}(t) - u_{b} \log \theta_{2} u_{b} \sin(\eta_{1})
$$
\n
$$
S(t) = A_{c} \cos \theta_{1}(t) - u_{b} \log \theta_{2} u_{b} \sin(\eta_{1})
$$
\n
$$
S(t) = A_{c} \cos [\frac{1}{2} \pi f_{c} + 4 \pi k_{f} \int m(t) dt] - (8)
$$
\n
$$
= 6
$$
\n
$$
P(u_{b} \sin(\eta_{1})) = A_{m} \cos \pi f_{m} \cos \eta_{1} + P(u_{b} \sin \eta_{2})
$$
\n
$$
= \frac{A_{m}}{2} \sin \pi f_{m} \sin \eta_{2} + P(u_{b} \cos \eta_{1})
$$
\n
$$
= \frac{A_{m}}{2} \sin \pi f_{m} \sin(\pi f_{m} \sin \eta_{2})
$$
\n
$$
= A_{c} \cos [\frac{1}{2} \pi f_{c} + 4 \pi k_{f} \times \frac{A_{m}}{2} \sin \pi f_{m} \sin \eta_{2}]
$$
\n
$$
= A_{c} \cos [\frac{1}{2} \pi f_{c} + \frac{k}{2} \frac{1}{2} \sin \pi f_{m} \sin \pi f_{m} \sin \eta_{2}]
$$
\n
$$
= A_{c} \cos [\frac{1}{2} \pi f_{c} + \frac{k}{2} \frac{1}{2} \sin \pi f_{m} \sin \
$$

2A).

$$
s(t) = 10\sin\left(5 * 10^8 t + 4\sin\left(1250 t\right)\right)
$$

Comparing with basic FM equation $s(t) = A_c \cos[2\pi f_c t + \beta \sin(2\pi f_m t)]$

a) Modulation Index = 4

b) Carrier frequency = 79.6MHz

c) Frequency Deviation =index*fm =4*199 =796Hz

d) Power generated across 5ohm load =(Ac^2)/2R = 50/50 =1W

2B) fm=15kHz, deviation =50kHz

BT = 2(deviation+fm) =130kHz

4. FM stereo

Fig. 2 shows the detroil th perciver of FM-stereo system. It is used to recover the two message signals m_{i(+)} and mi_{R(+)}.

FM-81ereo demultiplexer consists of 3-Filters,

1. Baseband LPF: It Relects the base-band component [m(+)+mplt Present in multiplexed Figmal m(t).

2. BPF: (Bandpass filter): It selects the DSBSC-Bignal.

3. Nation band fit thes- It solects the pillet comies signal, Cos(estift).

Frequency doubles produces the required subcarries signal, cos(4mg for Coherent detection of DSBSC-8ignal.

Coherent Delector, recovers the difference signal $[m_l(t)-m_p(t)]$.

Finally the Matrixer, produces the required signals $2m_l(f)$ and $2m_g(f)$.

Statement: Sampling theorem states that any continuous time signal can be completely represented in its samples and recovered back if the sampling frequency is greater than or equal to twice the highest frequency component of base band signal.

That is Sampling frequency, 522F.

Where W= Highest frequency in base band continuous time signal. This condition is also called Nyquist condition for sampling process. **Explanation and Proof:**

where,
\n
$$
G_0(t) = \frac{1}{10} \times \frac{1}{10} \times 6 \times 6
$$

\nSubstituting Eq. 65 in Eq. 94) are get
\n $G_0(t) = G(t) * I_3 \times \frac{1}{10} \times 6$ (k-n/s)
\nFrom convention property of impulse function
\n $4kt$, $G(t) * S(t-n/s) = G(t-n/s)$
\n $\therefore G_0(t) = I_3 \times \frac{1}{10} \times 6 \times (t-n/s)$
\n $G_0(t) = I_3 \times G(t) + I_3 \times \frac{1}{10} \times 6 \times (t-n/s)$
\n $G_0(t) = I_3 \times G(t) + I_3 \times \frac{1}{10} \times 6 \times (t-n/s)$
\n $G_0(t) = I_3 \times G(t) + I_3 \times \frac{1}{10} \times 6 \times (t-n/s)$
\n $G_0(t) = I_3 \times G(t)$
\n $G_0(t) = I_3 \times G(t)$
\n $G_0(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\n $\therefore G(t) = \frac{1}{10} \cdot 6 \times G(t)$
\

Now, we may state the sampling theorem for strictly bandtimited signals of finite energy with _{kuo e}guivalent parte of A band kineted expral of first energy, which only has tregnery components less than "w" Hertz, is complet has frequency company the values of the signal at instants of fine separated by $\frac{1}{3\omega}$ seconds. x A bandlimited signal of finite everyon, which only has frequency components less than "IN" Hertz, may be completely recorrered from a knowledge of its samples taken at the rate of als samples per second. the sampling rate of the samples per second, for a rate; its reciprocal V_{dbl} (measured in seconds) is called the Nyquist interval. ∱ କ∯ ရ-့(၂) 6 (o) JN 60 -14 Ы علاسہ

: (a) spectom of a strictly bound limited signal get). নিব্ (b) spectrum of a sampled version of get for $T_1 = \frac{1}{3\omega}$

7)b

- Less sensitive to noise.
- It is easier to integrate different services
- video and the accompanying soundtrack, into the same transmission scheme.
- The transmission scheme can be relatively independent of the source.
- Circuitry for handling digital signals is easier to repeat
- Digital circuits are less sensitive to physical effects
	- such as vibration and temperature.
- Digital signals are simpler to characterize , this makes the associated hardware easier to design.
- Easy to Implement techniques like
	- Multiplexing
- Channel compensation
	- Equalization
	- Error correction
- There are techniques for removing redundancy from a digital transmission, so as to minimize the amount of information that has to be transmitted.
- Digital techniques make it easier to specify complex standards that may be shared on a worldwide basis.
- This allows the development of communication components with different features and their interoperation with a different component produced by a different manufacturer.

- Hito take a narrow sample of each of the 'N' samples of circuit at a rate of t > 2 w.
- s to sequentially interleane (multiplex) these 'N' sample inside a sampling interval T_s = $V_{\uparrow c}$.
- * the mnittiplexed signal is then applied to a pulse amplitude modirlator whose purpose is to transform the minitiplexed signal into a form suitable for transmers over a common channel.
- * At the receiving end, the putte amplitude demodulate performs the reverse operation of PAM and the decomp Intator dictributes the signals to the appropriate low pass reconstruction filters. The decommitator operates in surchromeation with the communitator.