

Scheme Of Evaluation

<u>Internal Assessment Test III – July 2023</u>

Sub:	DIGITAL COMMUNICATION					Code:	18EC61		
Date:	04/07/2023	Duration:	90 mins	Max Marks:	50	Sem:	VI	Branch:	ECE

Note: Answer Any 5Questions

Ques	stion	Description		Marks	
#				Distribution	
1		Explain Binary Frequency Shift Keying (BFSK) with neat block diagrams of modulator and demodulator. Explain the decision logic at the demodulator.		10	10
		Modulator	2	=	
		Demodulator	2		
		Basis Function	2		
		Constellation Diagram	2		
		Decision Logic	2		
2		Draw the block diagram of Binary Phase Shift Keying (BPSK) demodulator. Explain the decision logic. Derive an expression for probability of error.		10	10
		Receiver	2	=	
		Decision Rule	2		
		Probability of Error	6		
3		Explain Quadrature Phase Shift Keying (QPSK) with neat block diagrams of		10	10
		modulator and demodulator. Explain the decision logic at the demodulator.			
		Modulator	2		
		Demodulator	2		
		Basis Function	2		
		Constellation Diagram	2		
		Decision Logic	2		
4	a	Consider a signal space with the following basis functions.			10
		$\Phi_1(t) = \begin{cases} \frac{1}{\sqrt{2}} \text{ for } 0 \le t \le 2\\ 0 \text{ otherwise} \end{cases} \text{and} \Phi_2(t) = \begin{cases} \frac{1}{\sqrt{2}} \text{ for } 0 \le t < 1\\ -\frac{1}{\sqrt{2}} \text{ for } 1 \le t \le 2\\ 0 \text{ otherwise} \end{cases}$			
		Plot the signals with coordinates $(2\sqrt{2}, -2\sqrt{2})$ and $(-2\sqrt{2}, 2\sqrt{2})$.			
		$\bullet x_1(t)$	2.5	05	1
		• $x_2(t)$	2.5		

4	b	Prove that the energy of a signal is equal to squared length of the signal		05	
		vector representing it in the signal space diagram.			
		Basis functions and Coordinates	2		
		Expression for Energy	3		
5		Obtain a set of orthonormal basis functions for the following set of signals.		10	10
		$x_1(t) = \begin{cases} 3 \text{ from } 0 \le t \le 3 \\ 0 \text{ otherwise} \end{cases} \text{and} x_2(t) = \begin{cases} 3 \text{ from } 0 \le t \le 1 \\ 0 \text{ otherwise} \end{cases}$			
		and			
		$x_3(t) = \begin{cases} 3 \text{ from } 1 \le t \le 3\\ 0 \text{ otherwise} \end{cases}$			
		Express the signals as a linear combination of basis functions. Draw the			
		signal space diagram (Constellation Diagram).			
		• Basis Function $\phi_1(t)$	2		
		• Basis Function $\phi_2(t)$	2		
		Linear Combination	3		
		Constellation Diagram	3		
6		What is the need of matched filter in digital communication receiver? Derive		10	10
		the impulse response of a filter matched to the signal $x(t)$.			
		Need of matched filter Decision Rule	2		
		Impulse Response of LTI system	2		
		Convolution	3		
		Impulse Response of Matched filter	3		

SOLUTIONS

In binary frequency shift keying (FSK)
bit i and bit o are represented by
the following symbols.

Bit 1:

2(+)- [2Eb] cos(2Tf,+) 0 = + = Tb

$$s_1(t) = \sqrt{\frac{2E_b}{T_b}} \cos(2\pi f_1 t)$$
, $o = t = T_b$
 $f_1 = \frac{\Omega}{T_b}$

n-nonzero integer Th-bit duration,

$$S_2(t) = \sqrt{\frac{2E_b}{T_b}} \cos\left(2\pi f_2 t\right), 0 \le t \le T_b$$

$$f_2 = \frac{m}{T_b}$$

$$m - non zero integri$$

$$m \neq 0.$$

To find basis functions

To

$$S_1(t) S_2(t) dt = 0$$

 \Rightarrow S₁(t) and S₂(t) are orthogonal to each other.

: Basis function
$$\phi_{1}(t) = \frac{S_{1}(t)}{\sqrt{E_{b}}}$$

$$= \sqrt{\frac{2}{T_{b}}} \cos(2\pi f_{1}t)$$

$$0 \le t \le T_{b}$$

Basis function
$$\phi_2(t) = \frac{s_2(t)}{\sqrt{E_b}}$$

$$= \sqrt{\frac{2}{T_b}} \cos(2\pi f_2 t)$$

$$= 0 \le t \le T_b$$

$$S_{1}(t) = \sqrt{E_{b}} \phi_{1}(t) + 0 \phi_{2}(t) , 0 \le t \le T_{b}$$

$$S_{2}(t) = 0 \phi_{1}(t) + \sqrt{E_{b}} \phi_{2}(t) , 0 \le t \le T_{b}$$

Constellation diagram

31ock diagram of transmitter

3inary data in NR2 unipolar form
$$(E_b, 0)$$

$$(E_b, 0)$$

$$(E_b, 0)$$

Suppose that bit is was transmitted. ce, s₂(t) was transmitted.

Then, from the block diagram of the receiver, we may write,

output of the correlator,

$$\chi_1 = \int_0^b \chi(t) \, dt$$

$$= \int \left[S_2(t) + \omega(t) \right] \phi_1(t) dt$$

$$= \int_{0}^{\infty} \int_{\infty} (t) \phi_{1}(t) dt + \int_{0}^{\infty} \omega(t) \phi_{1}(t) dt$$

$$=-\sqrt{E_{b}}+\omega_{1}---(2)$$

coordinate of so(t).

Mean of X, when o was transmitted.

$$\mu = E \left[x_{1} \right]$$

$$= -\sqrt{E_{b}} \dots (3)$$

Variance of X, when o was transmitted,

(: variance does not change by the addition of a constant to a random variation ble)

15

Probability density function (PDF) of output of correlator when bit o was transmitted, - (x-m)

transmitted,
$$-\frac{(\chi_{TM})}{2\sigma^{2}}$$

$$f_{\chi_{1}}(\chi_{1/0}) = \sqrt{\frac{1}{2\pi\sigma^{2}}} e^{-\frac{(\chi_{1}+\sqrt{E}b)^{2}}{N_{0}}}$$

$$= \sqrt{\frac{1}{\pi N_{0}}} e^{-\frac{(\chi_{1}+\sqrt{E}b)^{2}}{N_{0}}}$$

$$= \sqrt{\frac{1}{\pi N_{0}}} e^{-\frac{(\chi_{1}+\sqrt{E}b)^{2}}{N_{0}}}$$

Wrong decision is made when $S_2(t)$ was transmitted and $\chi_1 > 0$.

: Probability of error when bit o' was transmitted,

$$P_{e}(0) = P\left(X_{1} > 0 \middle| 0\right)$$

$$= \int_{0}^{\infty} f_{X_{1}}(x_{1} \middle| 0) dx_{1}$$

$$= \int_{0}^{\infty} \frac{-(x_{1}+\sqrt{E_{b}})^{2}}{\sqrt{\pi N_{0}}} dx_{1} - - - (6)$$

We know that,

$$Q(u) = \frac{1}{\sqrt{2\pi}} \int_{u}^{\infty} e^{-\frac{z^{2}}{2}} dz$$
 (7)

Let us represent Pe(0) en terms of

a function.

Put
$$\frac{\left(z_1 + \sqrt{E_b}\right)^2}{N_0} = \frac{z^2}{2}$$
 (8)

ie,
$$\frac{\chi_1 + \sqrt{Eb}}{\sqrt{N_0}} = \frac{Z}{\sqrt{2}}$$

$$\frac{dx_1}{\sqrt{N_0}} = \frac{dz}{\sqrt{2}}$$

$$dx_{1} = \sqrt{\frac{N_{0}}{2}} dz. - . . (9)$$

when
$$x_1 = 0$$
, $z = \sqrt{\frac{2E_b}{N_0}}$ (10)

when
$$x_1 = 0$$
, $z = 0$ --- (11)

Using (8),(9),(10),(11), we may write (6) as

$$P_{e}(0) = \int \frac{1}{\sqrt{\pi N_{0}}} e^{-\frac{z^{2}}{2}} \sqrt{\frac{N_{0}}{2}} dz$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{0}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{-\frac{z^{2}}{2}}{\sqrt{2\pi}} dz$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{2E_{b}}{N_{0}} - \frac{1}{2} dz$$

$$= \frac{1}{\sqrt{2\pi}} \int \frac{2E_{b}}{N_{0}} - \frac{1}{2} dz$$

Similarly, me may prove that, probability of error when bit I was transmitted,

$$P_{e}(1) = Q\left(\sqrt{\frac{2E_{b}}{N_{o}}}\right)^{\alpha} - ...(13)$$

:. Average probability of error $= \frac{1}{2} P_{e}(0) + \frac{1}{2} P_{e}(1)$ = Assuming equiprobable Os & Is) $= Q\left(\sqrt{\frac{2E_{b}}{N_{o}}}\right) ... (14)$

one of the four equally spaced values $\frac{30}{4}$ such as $\frac{11}{4}$, $3\frac{11}{4}$, $5\frac{11}{4}$, $7\frac{11}{4}$.

For this set of values, we may define the transmitted signal as

$$S_{i}(t) = \sqrt{\frac{2E}{T}} \cos \left[2\pi f_{c}t + (2i-1)\frac{\pi}{4} \right], 0 \le t \le T$$

$$i = 1, 2, 3, 4$$

fc= =

n-non-zero integer

Here, T is the symbol duration and E is the energy of each symbol.

Each possible value of the phase corresponds to a pair of bits (dibit).

$$S_{i}(t) = \sqrt{\frac{2E}{T}} \cos\left(2i-1\right) \frac{\pi}{4} \cos\left(2\pi f_{c}t\right)$$

$$-\sqrt{\frac{2E}{T}} \sin\left(2i-1\right) \frac{\pi}{4} \sin\left(2\pi f_{c}t\right)$$

OSTET

 $E = 2E_b$ and $T = 2T_b$ i = 1, 2, 3, 4

Basis functions are

 $\phi_1(t) = \sqrt{\frac{2}{T}} \cos(2\pi f_c t)$, $0 \le t \le T$

 $\phi_2(t) = \sqrt{\frac{2}{T}} \sin(2\pi f_c t), 0 = t \leq T$

:.
$$S_{i}(t) = \sqrt{E} \cos \left[(2i-i) \frac{\pi}{4} \right] \phi_{i}(t)$$

$$- \sqrt{E} \sin \left[(2i-i) \frac{\pi}{4} \right] \phi_{2}(t), \text{ OSTET}$$
:. The coordinates of message points
are

$$\sqrt{E} \cos \left[(2i-1) \frac{\pi}{4} \right]$$
 $= 1, 2, 3, 4$

i phase coordinates dibits
$$\frac{1}{4} = \frac{10}{4}$$

$$\frac{1}{4} = \frac{11}{4}$$

$$\frac{1}{4} = \frac{11}{4}$$

$$\frac{1}{4} = \frac{11}{4}$$

Based on these coordinates, signal space diagram of QPSK System may be draw-n as follows.

Let x(t), $0 \le t \le T$ be the received symbol. $x(t) = S_i(t) + \omega(t)$, $0 \le t \le T$ i = 1, 2, 3, 4

where w(t) represents additive, white Gaussian noise with zero mean and PSD $\frac{N_0}{2}$ ie, Variance $\frac{N_0}{2}$.

Probability of error.

Suppose that S₄(t) was transmitted.

From the block diagram of receiver. we have

4	
a	