

Sub: Analysis of structures-IAT-2 Solutions

Question number 1 is mandatory; answer any 2 full questions from Q2 to Q4.

1 (a) Determine the fixed end moments for the beam shown in Fig.1.a. Consider that EI is constant through the span of continuous beam

(a) FEM

$$M_{FAB} = -\frac{\omega l^2}{12} - \frac{Wab^2}{l^2} = \frac{-10x6^2}{12} \frac{30x2x4^2}{6^2} = -56.67$$

$$M_{FBA} = +\frac{\omega J^2}{12} + \frac{Wa^2b}{J^2} = +\frac{10x6^2}{12} + \frac{30x2^2x4}{6^2} = +43.33$$

$$M_{FBC} = M_{FCB} = +\frac{M}{4} = +12.5 \text{ kn-m}$$

1 (b) Analyse the continuous beam shown in Fig.1.b by slope deflection method and draw BMD and EC.

(a)
$$\frac{\text{FEM}}{8}$$

MFAB = $-\frac{\text{WJ}}{8} = \frac{-50 \times 4}{8} = -25 \text{kn-m}$

MFBA = $+\frac{\text{WJ}}{8} = +25 \text{kn-m}$

MFBC = $-\frac{\text{CJ}^2}{12} = -\frac{15 \times 5^2}{12} = -31.25$

MFCB = $+\frac{\text{CJ}^2}{12} = +31.25$

MFCD = $-\frac{\text{Wab}^2}{12} = -\frac{80 \times 2 \times 4^2}{6^2} = -71.11 \text{ kn-m}$

MFDC = $+\frac{\text{Wab}}{\text{J}^2} = \frac{80 \times 2 \times 4}{6^2} = +35.56 \text{kn-m}$

(b) S.D. Equation:
$$\Theta_{A} = \Theta_{D} = O \text{ (i. Fixed Support)}$$

$$\delta = O(\text{i. No sinking})$$

$$\left(M_{AB} = \frac{2ET}{J} \left[2\theta_A + \theta_B - \frac{3\delta}{J} \right] + M_{FAB} \right)$$

$$M_{AB} = \frac{2EI}{4} [0 + \theta_B - 0] - 2S = 0.5EI \theta_B - 2S - ($$

$$MBA = \frac{2EI}{4} \left[2\theta B + 0 - 0 \right] + 25 = EI \theta B + 25 - (11)$$

$$MBC = \frac{2EI}{5}[2\theta B + \theta C - 0] - 3J_1 25$$

= 0.8EI\theta B + 0.4EI\theta C - 3J_1 25 - (1)

$$M_{CB} = \frac{2EI}{S} \left[2\theta c + \theta B - O \right] + 31.25$$

= 0.8 EI \text{0.4 EI \theta B} + 31.25 \lefta \text{1V}

$$M_{CD} = \frac{2EI}{6} [2\theta c + 0 - 0] - 71.11 = 0.667 EI \theta c - 71.11 - 6$$

$$MDC = \frac{2EI}{6}[0 + \theta c - \delta] + 35.56 = 0.333EI\theta c + 35.6$$

$$\left[\mathbb{E}\mathbb{I}\theta_{B}+25\right]+\left[0.8\mathbb{E}\mathbb{I}\theta_{B}+0.4\mathbb{E}\mathbb{I}\theta_{C}-31.25\right]=0$$

Solving
$$\theta_B = -2.73/EI$$
.
 $\theta_C = +27.91/EI$

2 (a) A suspension bridge of 100m span has a central dip of 10 m and supports an udl of 12 kN/m throughout the span. Calculate i) The minimum and maximum tension in cable, ii) The size of cable if the permissible stress of the cable material is 180N/mm² iii) Length of the cable

$$V_{A} = 0$$
 $V_{B} \times 100 + 12 \times 100 \times 100$
 $V_{B} = 600$
 $V_{A} = 600$
 $V_{A} = 1200 - 600$
 $V_{A} = 600$

Maximum tension

That =
$$\sqrt{V^2 + H^2}$$

= $\sqrt{(1200)^2 + (1500)^2}$

That = 1920.94 KN

Minimum tension

Thin = $H = 1500 \text{ KN}$

Size of Cable

 $G = \frac{T_{\text{max}}}{T_{\text{L}}(d)^2}$
 $d^2 = \frac{1920.94 \times 10^3}{4}$
 $d^2 = 1920.94 \times 10^3$

The initial of $d^2 = 13587.87095$
 $d^2 = 13587.87095$
 $d^2 = 116.567 \text{ mm}$

Lungth of the cable

 $g = g + \frac{g}{3} \left(\frac{d^2}{g}\right)$
 $g = 100 + g \cdot 67 \text{ m}$
 $g = 102.67 \text{ m}$

3 (a) Calculate the radial shear and normal thrust at 4m from the left support of a parabolic arch shown in fig.3.a also draw bending moment diagram.

$$\geq M_{C}=0$$
, $10 \times 10 \times 10^{2} - 114 \times 10 + 4 \times H = 0$
 $H = 160 \text{KM}$

$$R_{A} = 230.55 \text{ kn}$$
 $R_{B} = 196.45$
 $\theta_{A} = 46.05$ $\theta_{B} = 35.47$

(b) Rise and Slope

$$y = \frac{4 \times 4}{(20)^2} \times (20-x)$$
 $y = 0.8x - 0.04x^2$

(11)
$$MD = V_{A}x_2 - 10x_2x_2/2 - Hx_3/D$$

= $166x_2 - 20 - 160[0.8x_2 - 0.04(2)^2] = 81.6 \text{ km·m}$

(III)
$$M_E = V_{AX5} - 10x5x5/2 - 40x3 - HxY_E$$

= $166x5 - 125 - 120 - 160[0.8x5 - 0.04(5)^2] = 105kN-m$

IN In between CB

Since UDL is between two hinged point, take moment exactly at mid point $f \subseteq B$ (x=5m)

$$M_{X} = 114 \times 5 - 10 \times 5 \times 5 / 2 - 160 \left[0.8 \times 5 - 0.04(5)^{2} \right] = -35 \text{km/m}$$

BMD

BMD

BMD

4 (a) A three hinged parabolic arch is shown in fig 4.a, Compute normal thrust and radial shear at 9m from left hand support, also draw bending moment diagram.

(a) Reaction
$$\Xi V=0$$
, $V_A+V_B=30 \times 15+60=510$ $\Xi V=0$, $V_A+V_B=30 \times 15 \times 15 / 2+60 \times 21=0$ $V_B=154.5 kN$ $2 V_A=355.5 km$

$$\geq M_{c=0}, (R+U)$$

-154.5×15+60×6+ +1×6=0 $\frac{41}{290}$ $\frac{1}{4}$

:,
$$RA = \sqrt{V_A^2 + H^2} = 482.51 \text{ km}$$
 $RB = \sqrt{V_B^2 + H^2} = 360.98 \text{ km}$
 $AB = 4an(\frac{V_A}{H}) = 47.45^{\circ}$ $AB = 4an(\frac{V_B}{H}) = 25.34^{\circ}$
(b) Kile and Siope

$$y = \frac{4 \times 6}{(30)^2} x (30-x) \qquad \qquad y = 0.8x - 0.027x^2$$

- @BMD:-
- (1) $M_A = M_B = M_C = 0$
- (ii) MD= 154.5×9-326.25 [4] $= 154.5 \times 9 - 326.2 \left[0.8 \times 9 - 0.027(9)^{2} \right] = -245$

If there is a UDL bestseen two higed support, then exactly at mi'd point you will get max. +ve moment

$$M_{X} = V_{A} \times 7.5 - 30 \times 7.5 \times \frac{7.5}{2} - H_{X} y_{X}$$

$$= 355.5 \times 7.5 - 30 \times \frac{7.5^{2}}{2} - 326.25 \left[0.8 \times 7.5 - 0.027 (7.5)^{2} \right]$$

Mx = 360.5 kw-m

360.5 kin-m

a) BM, N:T and R.S. of x = 9m from left: H = 326.25 kN $\Theta = tan(0.8 - 0.054 \times 9) = 17.43$ Thear Force $V = VA - 30 \times 9 = 355.5 - 270 = 85.5 \text{ kN}$ $V = VA - 30 \times 9 = 356.88 \text{ kN}$ $V = VA - 30 \times 9 = 36.88 \text{ kN}$

A three hinged segmental (circular) arch of 10m and central rise 2.5m supports a point load of 100 kN at left quarter span and a UDL of 20 kN/m over the right half of the span shown in figure. Determine support reactions, normal thrust and radial shear at right quarter span.

Sol (a) Reactions

$$\leq V=0$$
, $V_A + V_B = 100 + 20x5 = 200$ — (i)
 $\leq M_B=0$, $V_A \times 10 - 20x5 \times 5/2 - 100 \times 7.5 = 0$
 $V_A = 100 \, \text{kN}$ $2 \cdot V_B = 100 \, \text{kN}$
 $\leq M_C=0$, $-100 \times 5 + 20 \times 5 \times 5/2 + 11 \times 2.5 = 0$
 $= 100 \, \text{kN}$
 $= 100 \, \text$

(i)
$$M_A = M_B = M_C = 0$$

(11)
$$M_D = V_{A} \times 2.5 - H \times Y$$

= $100 \times 2.5 - 100 \left[\sqrt{(39.06 - x^2)} - 3.75 \right]$

Put x = 2.5m measured from Crown,

MD = 52.2 kn-m

take moment exactly at midpoint of CB.

$$M_{X} = 100 \times 2.5 - 20 \times 2.5 \times 2.5 - 100 \left[\sqrt{39.06-x^{2}} \right] - 3.75 \right]$$

$$put x = 2.5 m$$

