

USN

Department of AI-ML and AI-DS
Internal Assessment Test 3 – September 2023

Sub: Microcontroller & Embedded Systems Sub Code: 21CS43 Branch: AI-ML & AI-DS

Date: 09-09-23 Duration: 90 min’s Max Marks: 50 Sem / Sec: 4th OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. Write a short note on utility of LED and Seven segment display as actuators [10] CO4 L3

2. Discuss the architecture and working of Inter Integrated Circuit or I2C or I2C protocol [10] CO4 L3

3. Explain the construction and working of Reset and Brownout protection circuit. [10] CO4 L3

4. Discuss in detail about the OS architecture for RTOS based embedded system design [10] CO5 L2

5. Elaborate the functions of the Real-Time Kernel [10] CO5 L2

6. Explain the concept of Mailbox and the Sockets for IPC [10] CO5 L2

7. Define Deadlock. Explain the Racing conditions due to deadlock and methods to handle

deadlock

[10] CO5 L3

USN

Department of AI-ML and AI-DS
Internal Assessment Test 3 – September 2023

Sub: Microcontroller & Embedded Systems Sub Code: 21CS43 Branch: AI-ML & AI-DS

Date: 09-09-23 Duration: 90 min’s Max Marks: 50 Sem / Sec: 4th OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. Write a short note on utility of LED and Seven segment display as actuators [10] CO4 L3

2. Discuss the architecture and working of Inter Integrated Circuit or I2C or I2C protocol [10] CO4 L3

3. Explain the construction and working of Reset and Brownout protection circuit. [10] CO4 L3

4. Discuss in detail about the OS architecture for RTOS based embedded system design [10] CO5 L2

5. Elaborate the functions of the Real-Time Kernel [10] CO5 L2

6. Explain the concept of Mailbox and the Sockets for IPC [10] CO5 L2

7. Define Deadlock. Explain the Racing conditions due to deadlock and methods to handle

deadlock

[10] CO5 L3

CI: CCI: HOD:

Internal Assessment Test 3 – September 2023

Sub: Microcontroller & Embedded Systems Sub Code: 21CS43 Branch: AI-ML & AI-DS

Date: 09-09-23 Duration: 90 Minutes Max Marks: 50 Sem / Sec: 4th OBE

Scheme and Solution

MARKS

CO

RBT

1 LED is a p-n junction diode and contains a CATHODE and ANODE For functioning the anode

is connected to +ve end of power supply and cathode is connected to –ve end of power supply.

The maximum current flowing through the LED is limited by connecting a RESISTOR in

series between the power supply and LED as shown in the figure below

There are two ways to interface an LED to a microprocessor/microcontroller:

1.The Anode of LED is connected to the port pin and cathode to Ground : In this approach the

port pin sources the current to the LED when it is at logic high(ie. 1)

2.The Cathode of LED is connected to the port pin and Anode to Vcc : In this approach the

port pin sources the current to the LED when it is at logic high (ie. 1). Here the port pin sinks

the current and the LED is turned ON when the port pin is at Logic low (ie. 0)

A seven-segment display (SSD), or seven-segment indicator, is a form of electronic display

device for displaying decimal numerals that is an alternative to the more complex dot matrix

displays.Seven-segment displays are widely used in digital clocks, electronic meters, basic

calculators, and other electronic devices that display numerical information.

The seven elements of the display can be lit in different combinations to represent the Arabic

numerals. Often the seven segments are arranged in an oblique (slanted) arrangement, which

aids readability. In most applications, the seven segments are of nearly uniform shape and size

(usually elongated hexagons, though trapezoids and rectangles can also be used), though in the

case of adding machines, the vertical segments are longer and more oddly shaped at the ends in

an effort to further enhance readability.The numerals 6 and 9 may be represented by two

different glyphs on seven-segment displays, with or without a 'tail'.[2][3] The numeral 7 also

has two versions, with or without segment F.[4]

The seven segments are arranged as a rectangle of two vertical segments on each side with one

horizontal segment on the top, middle, and bottom. Additionally, the seventh segment bisects

the rectangle horizontally. There are also fourteen-segment displays and sixteen-segment

displays (for full alphanumerics); however, these have mostly been replaced by dot matrix

displays. Twenty-two segment displays capable of displaying the full ASCII character set[5]

were briefly available in the early 1980s, but did not prove popular.The segments of a 7-

segment display are referred to by the letters A to G, where the optional decimal point (an

"eighth segment", referred to as DP) is used for the display of non- integer numbers.

4+6

CO4 L3

2 I2C was originally developed in 1982 by Philips for various Philips chips. The original spec

allowed for only 100kHz communications, and provided only for 7-bit addresses, limiting the

number of devices on the bus to 112 (there are several reserved addresses, which will never be

used for valid I2C addresses). In 1992, the first public specification was published, adding a

400kHz fast-mode as well as an expanded 10-bit address space. Much of the time (for instance,

in the ATMega328 device on many Arduino-compatible boards) , device support for I2C ends

at this point. There are three additional modes specified: fast-mode plus, at 1MHz; high-speed

mode, at 3.4MHz; and ultra-fast mode, at 5MHz.

Each I2C bus consists of two signals: SCL and SDA. SCL is the clock signal, and SDA is the

data signal. The clock signal is always generated by the current bus master; some slave devices

may force the clock low at times to delay the master sending more data (or to require more
time to prepare data before the master attempts to clock it out). This is called “clock stretching”

and is described on the protocol page.

Unlike UART or SPI connections, the I2C bus drivers are “open drain”, meaning that they can

pull the corresponding signal line low, but cannot drive it high. Thus, there can be no bus

contention where one device is trying to drive the line high while another tries to pull it low,

eliminating the potential for damage to the drivers or excessive power dissipation in the

system. Each signal line has a pull-up resistor on it, to restore the signal to high when no

device is asserting it low.

The sequence of operation for communicating with an I2C slave device is:

1.Master device pulls the clock line (SCL) of the bus to ‘HIGH’
2.Master device pulls the data line (SDA) ‘LOW’, when the SCL line is at logic ‘HIGH’ (This

is the ‘Start’ condition for data transfer)

3.Master sends the address (7 bit or 10 bit wide) of the ‘Slave’ device to which it wants to

communicate, over the SDA line. Clock pulses are generated at the SCL line for synchronizing

the bit reception by the slave device. The MSB of the data is always transmitted first. The data

in the bus is valid during the ‘HIGH’ period of the clock signal

4.Master sends the Read or Write bit (Bit value = 1 Read Operation; Bit value = 0 Write

Operation) according to the requirement

5.Master waits for the acknowledgement bit from the slave device whose address is sent on the

bus along with the Read/Write operation command. Slave devices connected to the bus

compares the address received with the address assigned to them

10

CO4 L3

6.The Slave device with the address requested by the master device responds by sending an

acknowledge bit (Bit value =1) over the SDA line

7.Upon receiving the acknowledge bit, master sends the 8bit data to the slave device over

SDA line, if the requested operation is ‘Write to device’. If the requested operation is ‘Read

from device’, the slave device sends data to the master over the SDA line

8.Master waits for the acknowledgement bit from the device upon byte transfer complete for a

write operation and sends an acknowledge bit to the slave device for a read operation

9.Master terminates the transfer by pulling the SDA line ‘HIGH’ when the clock line SCL is at

logic ‘HIGH’ (Indicating the ‘STOP’ condition)

3 Reset circuit:

The Reset circuit is essential to ensure that the device is not operating at a voltage level

where the device is not guaranteed to operate, during system power ON. The Reset signal
brings the internal registers and the different hardware systems of the processor/controller to

a known state and starts the firmware execution from the reset vector (Normally from vector

address 0x0000 for conventional processors/controllers. The reset vector can be relocated to

an address for processors/controllers supporting bootloader

The reset signal can be either active high (The processor undergoes reset when the reset pin

of the processor is at logic high) or active low (The processor undergoes reset when the reset

pin of the processor is at logic low).

Brownout Protection
Brown-out protection circuit prevents the processor/controller from unexpected program

execution behavior when the supply voltage to the processor/controller falls below a
specified voltage. The processor behavior may not be predictable if the supply voltage falls

below the recommended operating voltage. It may lead to situations like data corruption

A brown-out protection circuit holds the processor/controller in reset state, when the

operating voltage falls below the threshold, until it rises above the threshold voltage

Certain processors/controllers support built in brown-out protection circuit which monitors

the supply voltage internally. If the processor/controller doesn’t integrate a built-in brown-out

protection circuit, the same can be implemented using external passive circuits or supervisor

ICs

10

CO4 L3

4

The Kernel

•The kernel is the core of the operating system and is responsible for managing the system

resources andthe communication among the hardware and other system services.

•Kernel acts as the abstraction layerbetween system resources and user applications.

•Kernel contains a set of system libraries and services.
•For a general purpose OS, the kernel contains different services for handling the following.

Process Management

•Process management deals with managing the processes/tasks.

•Process management includes setting up the memory space for the process, loading the

process’s code into the memoryspace, allocating system resources, scheduling and managing

the execution of the process, setting upand managing the Process Control Block (PCB), Inter

Process Communication and synchronisation, process termination/deletion, etc.

Primary Memory Management

•The term primary memory refers to the volatile memory (RAM) where processes are loaded

and variables and shared data associated with each process are stored.

•The Memory Management Unit (MMU) of the kernel is responsible for
•Keeping track of which part of the memory area is currently used by which process

•Allocating and De-allocating memory space on a need basis (Dynamic memory allocation).

File System Management

•File is a collection of related information.

•A file could be a program (source code or executable), text files, image files, word documents,

audio/video files, etc.

•Each of these files differ in the kind of information they hold and the way in which the

1TFLinformation is stored.

•The file operation is a useful service provided by the OS.

•The file system management service of Kernel is responsible for

•The creation, deletion and alteration of files

Creation, deletion and alteration of directories
Saving of files in the secondary storage memory (e.g. Hard disk storage)

Providing automatic allocation of file space based on the amount of free space available

Providing a flexible naming convention. for the files

Secondary Storage Management

•The secondary storage management deals with managing the secondary storage memory

devices, if any, connected to the system.

•Secondary memory is used as backup medium for programs and data since the main memory

is volatile.

•In most of the systems, the secondary storage is kept in disks (Hard Disk).

•The secondary storage management service of kernel deals with

Disk storage allocation
Disk scheduling (Time interval at which the disk is activated to backup data)

Free Disk space management

[10]

CO5 L2

Protection Systems

•Most of the modern operating systems are designed in such a way to support multiple users

with different levels of access permissions (e.g. Windows XP with user permissions like

•‘Administrator’, ‘Standard’, ‘Restricted’, etc.). Protection deals with implementing the

security policies to restrict the access to both user and system resources by different

applications or processes or users.

•In multiuser supported operating systems, one user may not be allowed to view or modify the

whole/portions of another user’s data or profile details.

•In addition, some application may not be granted with permission to make use of some of the

system resources.

•This kind of protection is provided by the protection services running within the kernel.

Interrupt Handler
•Kernel provides handler mechanism for all external/internal interrupts generated by the

system.

•These are some of the important services offered by the kernel of an operating system.

•It does not mean that a kernel contains no more than components/services explained above.

•Depending on the type of the operating system, a kernel, may contain lesser number of

components/services or more number of components/services.

•In addition to the components/services listed above, many operating systems offer a number

of add-on system components/services to the kernel.

•Network communication, network management, user-interface graphics, timer services

(delays, timeouts, etc.), error handler, database management, etc. are examples for such

components/services.
•Kernel exposes the interface to the various kernel applications/services, hosted by kernel, to

the user applications through a set of standard Application Programming Interfaces (APIs).

•User applications can avail these API calls to access the various kernel application/services.

5 The Real-Time Kernel

•The kernel of a Real-Time Operating System is referred as RealTime kernel.

•In complement to the conventional OS kernel, the Real-Time kernel is highly

specialised and it contains only the minimal set of services required for running the

user applications/tasks.

The basic functions of a Real-Time kernel are listed below:

 Task/Process management

 Task/Process scheduling

 Task/Process synchronisation

 Error/Exception handling
 Memory management

 Interrupt handling

 Time management

Task/Process management

•Deals with setting up the memory space for the tasks, loading the task’s code into the

memory space, allocating system resources, setting up a Task Control Block (TCB)

for the task and task/process termination/deletion.

•A Task Control Block (TCB) is used for holding the information correspondingto a

task.

•TCB usually contains the following set of information.
Task ID: Task Identification Number

Task State: The current state of the task (e.g. State = ‘Ready’ for a task which is

ready to execute)

Task Type: Task typeIndicates what is the type for this task. The task can be a hard

real time or soft real time or background task.

Task Priority: Task priority (e.g. Task priority = 1 for task with priority = 1)

Task Context Pointer: Context pointer-Pointer for context saving

Task Memory Pointers: Pointers to the code memory, data memory and stack

memory for the task

Task System Resource Pointers: Pointers to system resources (semaphores, mutex,

etc.) used by the task

Task Pointers: Pointers to other TCBs (TCBs for preceding, next and waiting tasks)
Other Parameters Other relevant taskparameters

•The parameters and implementation of the TCB is kernel dependent.

•The TCB parameters vary across different kernels, based on the task management

implementation.

•Task management service utilises the TCB of a task in the following way

10 CO5 L2

•Creates a TCB for a task on creating a task

•Delete/remove the TCB of a task when the task is terminated or deleted

•Reads the TCB to get the state of a task

•Update the TCB with updated parameters on need basis (e.g. on a context switch)

•Modify the TCB to change the priority of the task dynamically

Task/Process Scheduling

•Deals with sharing the PU among various tasks/processes.

•A kernel application called ‘Scheduler’ handles the task scheduling.

•Scheduler is nothing but an algorithm implementation, which performs the efficient

and optimal scheduling of tasks to provide a deterministic behaviour.

Task/Process Synchronisation

•Deals with synchronising the concurrent access of a resource, which is shared across
multiple tasks and the communication between various tasks.

Error/Exception Handling

•Deals with registering and handling the errors occurred/exceptions raised during the

execution of tasks.

•Insufficient memory, timeouts, deadlocks, deadline missing, bus error, divide by

zero, unknown instruction execution, etc. are examples of errors/exceptions.

Errors/Exceptions can happen at the kernel level services or at task level.

•Deadlock is an example for kernel level exception, whereas timeout is an example

for a task level exception.

•The OS kernel gives the information about the error in the form of a system call

(API).
•GetLastError() API provided by Windows CE RTOS is an example for such a system

call.

•Watchdog timer is a mechanism for handling the timeouts for tasks.

•Certain tasks may involve the waiting of external events from devices.

•These tasks will wait infinitely when the external device is not responding and the

task will generate a hang-up behaviour.

•In order to avoid these types of scenarios, a proper timeout mechanism should be

implemented.

•A watch- dog is normally used in such situations.

•The watchdog will be loaded with the maximum expected wait time for the event and

if the event is not triggered within this wait time, the same is informed to the task and

the task is timed out.
•If the event happens before the timeout, the watchdog is resetted.

6 Mailbox
•Mailbox is an alternate form of ‘Message queues’ and it is used in certain Real- Time

Operating Systems for IPC.

•Mailbox technique for IPC in RTOS is usually used for one way messaging.

•The task/thread which wants to send a message to other tasks/threads creates a mailbox for

posting the messages.

•The threads which are interested in receiving the messages posted to the mailbox by the

mailbox creator thread can subscribe to the mailbox.

•The thread which creates the mailbox is known as ‘mailbox server’ and the threads which

subscribe to the mailbox are known as ‘mailbox clients’.

•The mailbox server posts messages to the mailbox and notifies it to the clients which are

subscribed to the mailbox.

•The clients read the message from the mailbox on receiving the notification.

•The mailbox creation, subscription, message reading and writing are achieved through OS

kernel provided API calls, Mailbox and message queues are same in functionality.

•The only difference is in the number of messages supported by them.

•Both of them are used for passing data in the form of message(s) from a task to another

task(s). Mailbox is used for exchanging a single message between two tasks or between an
Interrupt Service Routine (ISR) and a task.

•Mailbox associates a pointer pointing to the mailbox and a wait list to hold the tasks

waiting for a message to appear in the mailbox.

•The implementation of mailbox is OS kernel dependent.

•The MicroC/OS-II implements mailbox as a mechanism for inter-task communication.

•Figure given below illustrates the mailbox based IPC technique

[5+5]

CO5 L2

•Socket is a logical endpoint in a two-way communication link between two applications

running on a network.

•A port number is associated with a socket so that the network layer of the communication

channel can deliver the data to the designated application.

•Sockets are of different types, namely, Internet sockets (INET), UNIX sockets, etc.

•The INET socket works on internet communication protocol.

•TCP/IP, UDP, etc. are the communication protocols used by INET sockets. INET sockets

are classified into:

1. Stream sockets

2. Datagram sockets

•Stream sockets are connection oriented and they use TCP to establish a reliable connection.

On the other hand, Datagram sockets rely on UDP for establishing a connection.

•The UDP connection is unreliable when compared to TCP.

•The client-server communication model uses a socket at the client side and a socket at the

server side.

•A port number is assigned to both of these sockets.

•The client and server should be aware of the port number associated with the socket.

•In order to start the communication, the client needs to send a connection request to the

server at the specified port number.

•The client should be aware of the name of the server along with its port number.

•The server always listens to the specified port number on the network. Upon receiving a

connection request from the client, based on the success of authentication, the server grants

the connection request and a communication channel is established between the client and

server. The client uses the host name and port number of server for sending re- quests and

server uses the client’s name and port number for sending responses.

7

A race condition produces incorrect results whereas a deadlock condition creates a situation

where none of the processes are able to make any progress in their execution resulting in a set

of deadlock processes.

A situation similar to traffic jam issues is illustrated below

In its simplest form ‘deadlock’ is the condition in which a process is waiting for a resource

held by another process which is wait- ing for a resource held by the first process (Fig. 10.25).

To elaborate: Process A holds a resource x and it wants a resource y held by Process B. Process

B is currently holding resource y and it wants the resource x which is currently held by Process

A. Both hold the respective resources and they compete each other to get the resource held by

[1+4+5] CO5 L3

the respective processes. The result of the competition is ‘deadlock’.

None of the competing process will be able to access the resources held by other processes

since they are locked by the respective processes (If a mutual exclusion policy is implemented

for shared resource access, the resource is locked by the process which is currently accessing

it).

Mutual Exclusion: The criteria that only one process can hold a resource at a time. Meaning

processes should access shared resources with mutual exclusion. Typical example is the

accessing of display hardware in an embedded device.

Hold and Wait: The condition in which a process holds a shared resource by acquiring the

lock control- ling the shared access and waiting for additional resources held by other

processes.

No Resource Preemption: The criteria that operating system cannot take back a resource from
a process which is currently holding it and the resource can only be released voluntarily by the

process holding it.

Circular Wait:

A process is waiting for a resource which is currently held by another process which in turn is

waiting for a resource held by the first process.

Deadlock Handling
The OS may adopt any of the following techniques to detect and prevent deadlock conditions.

Ignore Deadlocks:
Always assume that the system design is deadlock free. This is acceptable for the reason the

cost of removing a deadlock is large compared to the chance of happening a deadlock.
UNIX: is an example for an OS following this principle.

A life critical system cannot pretend that it is deadlock free for any reason.

Detect and Recover:
This approach suggests the detection of a deadlock situation and recovery from it. This one is

similar to the deadlock condition that may arise at a traffic junction.

When the vehicles from different directions compete to cross the junction, deadlock (traffic

jam) condition is resulted.deadlock (traffic jam) is happened at the junction, the only solution

is to back up the vehicles from one direction and allow the vehicles from opposite direction to

cross the junction. If the traffic is too high, lots of vehicles may have to be backed up to resolve

the traffic jam. This technique is also known as ‘back up cars’ technique (Fig. 10.26).

Operating systems keep a resource graph in their memory. The resource graph is updated on

each resource request and release. A deadlock condition can be detected by analysing the

resource graph by graph analyser algorithms. Once a deadlock condition is detected, the system

can terminate a process or preempt the resource to break the deadlocking cycle.

Avoid Deadlocks: Deadlock is avoided by the careful resource allocation techniques by the

Operating System. It is similar to the traffic light mechanism at junctions to avoid the traffic

jams.

Prevent Deadlocks: Prevent the deadlock condition by negating one of the four conditions

favouring the deadlock situation.

Ensure that-a process does not hold any other resources when it requests a resource. This can
be achieved by implementing the following set of rules/guidelines in allocating resources to

pro- cesses.

 1. A process must request all its required resource and the resources should be

allocated before the process begins its execution.

2. Grant resource allocation requests from processes only if the process does not hold a

resource currently.

Ensure that resource preemption (resource releasing) is possible at operating system level. This

can be achieved by implementing the following set of rules/guidelines in resources allocation

and releasing.

1. Release all the resources currently held by a process if a request made by the process for a

new resource is not able to fulfil immediately.

2. Add the resources which are preempted (released) to a resource list describing the resources

which the process requires to complete its execution.

3. Reschedule the process for execution only when the process gets its old resources and the

new resource which is requested by the process. Imposing these criterions may introduce

negative impacts like low resource utilisation and starvation of processes.

Livelock

 The Livelock condition is similar to the deadlock condition except that a process in

livelock condition changes its state with time.

 While in deadlock a process enters in wait state for a resource and continues in that

state forever without making any progress in the execution, in.alivelock condition a
process always does something but is unable’ to make any progress in the execution

completion.

 The livelock condition is better explained with the real world example, two people

attempting to cross each other in a narrow corridor.

 Both the persons move towards each side of the corridor to allow the opposite person

to cross. Since the corridor is narrow, none of them are able to cross each other. Here

both of the persons perform some action but still they are unable to achieve their

target, cross each other.

Starvation

 In the multitasking context, starvation is the condition in which a process does not get

the resources required to continue its execution for a long time.

 As time progresses the process starves on resource.

 Starvation may arise due to various conditions like byproduct of preventive measures

of deadlock, scheduling policies favouring high priority tasks and tasks with shortest

execution time, etc.

