
USN

INTERNAL ASSESSMENT TEST – I (SOLUTION)
Sub
: Design and Analysis of Algorithm Code: 21CS42

Date: 05/ 07 / 2023 Duration: 90 mins Max Marks: 50 Sem: IV Branch: AInDS

1(a) Define time complexity and Space Complexity. Explain the following
problem types:

(a) Sequencing (b) Sorting (C) Combinatorial
Solution:
Time complexity: Time complexity is most commonly evaluated by considering
the number of elementary steps required to complete the execution of an
algorithm. or how many times the basic operation is executed. It is expressed as a
function of time taken by an algorithm

Space Complexity is a combination of Fixed Space and Variable or Dynamic
space. Fixed/ Static Space Requirements are independent of the characteristics of
inputs and outputs
– Instruction space (space for code)
– Space for simple variables, fixed-size structured variable, constants (space for
data)
Variable/ Dynamic Space Requirements depend on
-Number, Size, Values of inputs and outputs associated with the algorithm
Recursive stack space, formal parameters, local variables, return addresses
Memory requirement when invoked creates an environment stack.

Sequencing problems: Sequencing problems are concerned with an appropriate
order (sequence) for a series of jobs to be done on a finite number of service
facilities (like machines) in some well-defined technological order so as to
optimize some efficiency measure such as total elapsed time or overall cost etc.

Sorting is a very classic problem of reordering items (that can be compared, e.g.,
integers, floating-point numbers, strings, etc) of an array (or a list) in a certain
order (increasing, non-decreasing (increasing or flat), decreasing, non-increasing
(decreasing or flat), lexicographical, etc).

Combinatorial Problems: These are problems that use permutations and
combinations to reach a solution. However, number of combinatorial objects
typically grows extremely fast with a problem's size, reaching unimaginable
magnitudes even for moderate-sized instances. Also, there are no known
algorithms for solving most such problems exactly in an acceptable amount of
time.

[05]

2

3

CO
1

L1

CI Signature CCI Signature HOD Signature

1(b)
Write an algorithm to find the maximum and minimum element using divide and
conquer approach to the list [31, 22, 12, -7, 75, -6, 17, 47, 60].
Solution:
Algorithm: Max - MinDC(A [i, j])

// input: Array A with lower and upper indices i and j
// output: maximum and minimum elements of the array

Begin
if (j – i) ≤ 1 then return (max(numbers[i], numbers[j]), min((numbers[i],

numbers[j]))
else
mid = ⌊ (i + j)/2 ⌋
(max1, min1):= Max - MinDC(A[i, mid])
(max2, min2):= Max - MinDC(A[mid+1, j])
return (max(max1, max2), min(min1, min2))

End

[05]

2

3

CO
1

L3

CI Signature CCI Signature HOD Signature

2(a)
Illustrate the mathematical analysis of recursive algorithm for the Tower of Hanoi
problem.

Solution:
1. When n=1; move the disk from peg 1 to 3.
2. To move n > 1 disks from peg 1 to peg 3 (with peg 2 as auxiliary)

-First move recursively n - 1 disks from peg1 to peg 2 (with peg 3 as auxiliary)
- Move the largest disk directly from peg 1 to peg 3
- Finally, move recursively n - 1 disks from peg 2 to peg 3 (using peg 1 as auxiliary peg).

Analysis:

1. Size of problem is n : number of disks
2. Primitive operation: move the disk from one peg to another
3. Number of moves M(n) depends on n only.

M(n) = M(n-1) +1+ M(n-1) for n>1

M(1) = 1.

M(n)= 2M(n-1)+1 …..(1)

M(n-1) = 2M(n-2) +1 (Substitute n by (n-1) in (1))

M(n) = 2(2M(n-2) +1) +1 = 22 M(n-2) + 2 +1 …..(2)

= 22 [2M(n-3) +1] +2+1 = 23 M(n-3) + 22 +2 +1

Generalizing, M(n) = 2k M(n-k) + 2k-1 + 2k-2+… + 22 +2 +1

= 2k M(n-k) + 2k-1+1 -1 = 2k M(n-k) + 2k -1

n-k = 1;

Put k = n-1,

M(n) = 2n-1[M(1)]+(2n-1-1)

M(1) indicates a problem of size 1.

M(n) = 2n-1 + (2n-1-1)

= 2n-1

Thus, M(n) = O(2n)

(Σ0 ≤ i ≤ n2i = 20+ 21+…+ 2n = 2n+1 – 1)

[06]

2

4

CO
1

L2

2(b)

If f(n) = n2 g(n) = n2+n
Then prove that f(n) = Ω(g(n)).

Solution:
We need to prove f(n) >= c.(g(n)) where, c>0; n >= n0 >=1

n2 >= c. (n2+n)
let c=½ ; then

n2 >= (n2)/2 + (n/2)
n2/2 + n2/2 >= (n2)/2 + (n/2)

[4]

1

1

CO
2

L3

CI Signature CCI Signature HOD Signature

n2/2 >= (n/2)
n2 >= n
n>= 1

Therefore, f(n) = Ω(g(n)) where c=½ and n0 = 1

2

3(a) Write a merge-sort algorithm and analyze the time complexity and space
complexity of it. Discuss the disadvantages of merge sort over quick sort.
Solution:
Algorithm Merge(B, C, A)
// Merges two sorted arrays into one sorted array
// Input: Arrays B and C both sorted
// Output: Sorted array A
Begin
i = 0; j = 0; k = 0; // pointer i, j, k track array B, C, A respectively
m = length(B); n = length(C)
while (i <= m) and (j <= n) do // copy larger element of B or C to A

if (B[i] < C[j]) then
A[k] = B[i]
i++

else
A[k] = C[j]
j++

End if
k++;

end while
if (i > m) then // copy remaining elements of C to A
while (k <= m+n) do

A[k] = C[j];
k++; j++;

Else if (j> n) then // copy remaining elements of B to A
while (k <= m+n) do

A[k] = B[i]]
k++; i ++;

Return (A);
End

Algorithm: Mergesort (A [first … last])

// Sorts array A[0..n-1] by recursive mergesort
// Input: Array A[0..n-1] of unsorted elements, where first = 0 and last = n-1
// Output: Array A[0.. n-1] sorted in non decreasing order
Begin

if (first = = last) then return A[first];
else // Find mid and split the list A

Mid = ⌊(first+last)/2⌋
For i = 0 to mid // copy elements of A[0.. mid] to intermediate array B

B[i] = A[i]
For i= mid+1 to last
C[i] = A[i] // copy elements of A[mid+1… n-1] to intermediate array C

Mergesort(B[0…mid]) // Call recursively
Mergesort(C[mid+1…n-1])

merge(B,C,A) // Conquer and merge
End

[06]

2

CO
2

L2

CI Signature CCI Signature HOD Signature

Analysis:
● Input parameter: ‘n’ size array
● Basic Operation: Comparison and Merging
● Minimal Variation
● Merge Sort divides the array into two equally sized parts.

Time complexity depends on the number of division stages. Recursion Relation
based on comparisons

C(n) = C(n/2) + C(n/2) +Cmerge(n) n>1

= 0 n=1

For the worst case, 1. When all the elements are already sorted in descending
order.

2. For merge; neither of two arrays becomes empty before the other one contains
just one element (e.g. smaller elements may come from the alternating arrays).
Therefore, in worst case Cmerge(n) = n- 1,

Applying Masters Theorem:

C(n) = 2C(n/2) + n-1

a=2; b= 21; k=1

2 = 21;

According to Master’s theorem when a = bk C(n)∈ Θ(nk log n)
Therefore, Worst case C(n)= Θ(n logn)

Best Case:
1. When elements are already sorted in ascending order.
2. For merge, one of the two array becomes empty before the other one.
Therefore, in best case

Cmerge(n) = n/2. (Minimum number of comparisons will be n/2 when
all elements of the first array are less than the elements of the second array).
The recurrence relation is C(n) = 2C(n/2) + n/2

a=2; b= 21; k=1

2 = 21;

According to Master’s theorem when a = bk C(n)∈ Θ(nk log n)
Therefore, Best case C(n)= O(n logn)

Average Case: When elements are jumbled (neither ascending or descending).

Average case is again Θ(n logn)

In mergesort, all elements are copied into an auxiliary array of size n, where n is
the number of elements in the unsorted array.

Hence, Space Complexity for merge sort is O(n).

3

CI Signature CCI Signature HOD Signature

Disadvantages of mergesort
1. It is not an inplace sorting algorithm. It uses more memory space to store

the sub elements of the initial split list.
2. It works well for large arrays and not for small arrays.When size of list

is very small, a large amount of time is wasted in recursion. (n<=15)
3. It uses a stack. So it requires extra space for storing activation records.

1

3(b) Define an algorithm. Explain the characteristics of an algorithm.

Solution:
Algorithm: It is a sequence of unambiguous instructions for solving problems.
For obtaining a required output for any legitimate input in a finite amount of
time.
Characteristics:

1. Input: 0 or more input values.
2. Output: Must generate some result. Function must do something, maybe

just return void.
3. Definiteness: Every statement should be clear and unambiguous.
4. Finiteness: Should have limited steps. Must terminate at some point.

Example: a web server has to stop service at some point. Can’t just keep
providing service endlessly.

5. Effectiveness: It should reach a solution.

[04]
CO
1

L1

4(a)
Write recursive code for Fibonacci series where time complexity is linear
(instead of linear-exponential).

Solution:
The Fibonacci numbers: (used in predicting prices stocks and commodities)

0, 1, 1, 2, 3, 5, 8, 13, 21, …

The Fibonacci recurrence:
F(n) = F(n-1) + F(n-2) for n>1
F(0) = 0
F(1) = 1

Method of backward substitutions to solve recurrence fails to get an easily
discernible pattern. Use Polynomial Reduction Method
General 2nd order linear homogeneous recurrence with constant coefficients:

ax(n) + bx(n-1) + cx(n-2) = f(n)
Where, a, b, and c are real numbers with a ≠ 0 and x(n) is an unknown
sequence.

For homogeneous recurrence, f(n) = 0.

[05]

½

CO
2

L1

CI Signature CCI Signature HOD Signature

// Compute the nth Fibonacci number recursively using its definition
Algorithm Fib(n)
//Input: A non negative integer n
//Output: The nth Fibonacci number
Begin
if n<=1 return n;
else return Fib(n-1) + Fib(n-2)

End

1

2

CI Signature CCI Signature HOD Signature

Analysis:
Input Parameter: ‘n’ the number
Basic Operation: Addition
Depends on ‘n’ – no variations
Algorithm recursive relation:

Fib(n) = Fib(n-1) + Fib(n-2) for n>1

Fib(0) = 0

Fib(1) = 1
Let number of additions performed to calculate F(n) be A(n).
Based on Basic Operation:

A(n) = A (n-1) + A(n-2) +1 for n>1, // Additions for n-1, n-2 and +1
addition to calculate the sum

A(0) = 0 and A(1) = 0
The recurrence relation is A(n) - A(n-1) - A(n-2) =1

1½

4(b)

Consider functions function_1 and function_2 expressed in pseudo code as
follows:

Function_1 Function_2
While n >1 do for i = 1 to 100*n do

for i = 1 to n do x = x+1;
x = x+1; end_for

end for
n =floor(n/2)

end_while

[05] CO
1

L2

CI Signature CCI Signature HOD Signature

Let f1(n) and f2(n) denote the number of times the statement “x=x+1” is executed
in Function_1 and Function_2, respectively. Define the relation between f1(n) and
f2(n) in terms of asymptotic notations.

2

1

1½

½

5. Apply both merge sort and quick sort algorithm to sort the characters
VTUBELAGAVI.
There are two ways to do it.

1. Consider alphabets as such and apply quicksort/ mergesort
2. convert the alphabets into ASCII code and sort the numbers thus

obtained.

[10
]

C
O2

L2

CI Signature CCI Signature HOD Signature

CI Signature CCI Signature HOD Signature

6(a) Discuss asymptotic notation with examples.
Solution:
The word Asymptotic means approaching a value or curve arbitrarily closely
(i.e., as some sort of limit is taken).

Used to analyze the performance of an algorithm for some large data set. It is a
mathematical representation of time complexity.

Types of Asymptotic Notations:
1. Big Oh: f(n) is in O(g(n)), denoted f(n)∈ O(g(n)), if order of growth of

f(n) ≤ order of growth of g(n) (within constant multiple), i.e., there exist
positive constant c and non-negative integer n0 such that f(n) ≤
c g(n) for every n ≥ n0

Example: Given f(n) = 3n+2, prove that f(n) = O(n)

3n+2=O(n) as 3n+2 ≤ 4n for all n≥2 , c = 4 and n0= 2, g(n) = n.

3n+2=O(n) as 3n+2 ≤ 5n for all n≥1, c = 5 and n0= 1, g(n) = n.

2. Big Omega: A function t(n) is said to be in Ω(g(n)), denoted t(n) ∈
Ω(g(n)), if t(n) is bounded below by some constant multiple of g(n) for
all large n, i.e., if there exist some positive constant c and some
nonnegative integer n0 such that
t(n) ≥ cg(n) for all n ≥ n0

Example: 3n2 + n ∈ Ω(n)
Here, t(n) = 3n2 + n; and g(n)=n
3n2 + n >= c.n ∀ n >= n0

>= 3n + n
>= 4n

If n = 1, c=4, 3n2 + n >= 4n ∀ n>=1
Hence, 3n2 + n ∈ Ω(n)

3. Theta: A function t(n) is said to be in Θ(g(n)), denoted t(n)∈ Θ(g(n)), if
t(n) is bounded both above and below by some positive constant multiples
of g(n) for all large n, i.e., if there exist some positive constant c1 and c2
and some nonnegative integer n0 such that

[06]

1

5

CO
1

L1

CI Signature CCI Signature HOD Signature

c2 g(n) ≤ t(n) ≤ c1 g(n) for all n ≥ n0
Example: n(n-1)/2∈ Θ(n2)

Here, t(n) = n(n-1)/2; and g(n)=n2

c2.n2 <= n(n-1)/2 <= c1.n2 ∀ n >= n0

Equation 1: c2.n2 <= n(n-1)/2

n(n-1)/2 >= c2.n2

n2 /2 - n/2 >= n2/2 - ½ * n2/2

>= 1/4n2

If n = 2, c= 1/4, n(n-1)/2 >= 1/4n2

Hence, n(n-1)/2∈ Ω(n2) ∀ n>=2

Equation 2: n(n-1)/2 <= c1.n2 ∀ n >= n02
n2 /2 - n/2 <= ½ n2

If n = 1, c= 1/2, n(n-1)/2 <= ½ n2

Hence, n(n-1)/2∈ O(n2) ∀ n>=1
From 1 and 2, c2.n2 <= n(n-1)/2 and n(n-1)/2 <= c1.n2
Hence, n(n-1)/2∈ Θ(n2)

4. Little oh : A function f(n) is in o(g(n)), denoted f(n)∈ o(g(n)), if order
of growth of f(n) < order of growth of g(n) (within constant multiple),
i.e., there exist positive constant c and non-negative integer n0 such that

f(n) < c g(n) for every n ≥ n0

5. little omega: A function t(n) is said to be in w(g(n)), denoted t(n)∈
w(g(n)), if t(n) is bounded below by some constant multiple of g(n) for all
large n, i.e., if there exist some positive constant c and some nonnegative
integer n0 such that
t(n) > cg(n) for all n ≥ n0

6(b) List out the advantages and disadvantages of Divide and Conquer technique.
Solution:
Advantages:
● Easily solve large problems faster than other algorithms.
● It solves simple sub-problems within the cache memory instead of

accessing the slower main memory.
● It supports parallelism because sub-problems are solved independently.
● Hence, the algorithm made using this approach runs on the multiprocessor

system

[04]
CO
2

L1

CI Signature CCI Signature HOD Signature

Disadvantages:
● It uses recursion therefore sometimes memory management is a very

difficult task.
● An explicit stack may overuse the space.
● It may crash the system if the recursion is carried out rigorously (require

Stack greater than the stack present in the CPU).

Answer any 5 full questions

CI Signature CCI Signature HOD Signature

