
 

 

 

USN           
  

Department of AI-ML and AI-DS 
Internal Assessment Test 1 – July 2023 

Sub: Microcontroller & Embedded Systems Sub Code: 21CS43 Branch: AI-ML & AI-DS 

Date: 04-07-23 Duration: 90 min’s Max Marks: 50 Sem / Sec: 4th  OBE 

Answer any FIVE FULL Questions MARKS CO RBT 

1.  Write a short note on RISC design philosophy. Compare Microprocessor and 

Microcontrollers. 

[10] CO2 L1 

2.   Discuss the embedded system hardware with example of ARM based embedded 

device. 

[10] CO2 L2 

3. Explain the data flow model of ARM core in detail. [10] CO2 L2 

4. Briefly discuss the Processor modes and Instruction set of ARM controllers [10] CO2 L2 

5. Discuss in detail about the core extension of ARM controller. [10] CO2 L2 

6. With examples and syntax explain the working of compare group of Instructions 

of ARM. 

[10] CO2 L3 

7. With examples and syntax explain the working of following Instructions of ARM 

i. MVN, ii. RRX, iii. RSC, iv. BIC 

[10] CO2 L3 

 

 

 

 

 

 

 
 

USN           
  

Department of AI-ML and AI-DS 
Internal Assessment Test 1 – July 2023 

Sub: Microcontroller & Embedded Systems Sub Code: 21CS43 Branch: AI-ML & AI-DS 

Date: 04-07-23 Duration: 90 min’s Max Marks: 50 Sem / Sec: 4th  OBE 

Answer any FIVE FULL Questions MARKS CO RBT 

1.  Write a short note on RISC design philosophy. Compare Microprocessor and 

Microcontrollers. 

[10] CO2 L1 

2.   Discuss the embedded system hardware with example of ARM based embedded 

device. 

[10] CO2 L2 

3. Explain the data flow model of ARM core in detail. [10] CO2 L2 

4. Briefly discuss the Processor modes and Instruction set of ARM controllers [10] CO2 L2 

5. Discuss in detail about the core extension of ARM controller. [10] CO2 L2 

6. With examples and syntax explain the working of compare group of Instructions 

of ARM. 

[10] CO2 L3 

7. With examples and syntax explain the working of following Instructions of ARM 

i. MVN, ii. RRX, iii. RSC, iv. BIC 

[10] CO2 L3 

 



 

 

 

 
Internal Assessment Test 1– July. 2023 

Sub: Microcontroller & Embedded Systems Sub Code: 21CS43 Branch: AI-ML & AI-DS 

Date: 04-07-23 Duration: 90 Minutes Max Marks: 50 Sem / Sec: 4th  OBE 

 

Scheme and Solution 

 

MARKS 

 

CO 

 

RBT 

1   

RISC design philosophy is 

 Aimed at simple but powerful instructions that execute within a single cycle 

at a high clock speed.  

 Concentrates on reducing the complexity of instructions performed by the 

hardware.  

 Provides greater flexibility and intelligence in software rather than hardware.  

The RISC philosophy is implemented with four major design rules:  

 Instructions: RISC has a reduced number of instruction classes. These classes 

provide simple operations so that each is executed in a single cycle. 

Each instruction is a fixed length to allow the pipeline to fetch future 

instructions before decoding the current instruction. 

 Pipeline:  The processing of instructions is broken down into smaller units 

that can be executed in parallel by pipelines.  

 Register: RISC machines have a large general-purpose register set. Any 

register can contain either data or an address.  

 Load-store architecture: The processor operates on the data held in registers. 

Separate load and store instructions transfer data between the register 

bank and external memory. 

• These design rules allow a RISC processor to be simpler, and thus the core can 

operate at higher clock speed. 

• Figure below shows the major difference between CISC and RISC processors, CISC 

emphasizes on hardware complexity, whereas RISC emphasizes on compiler 

complexity. 

 

 

 

 

 

 

 

 

 

05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

05 

 

 

 

 

 

CO2 L1 



 

2  Figure shown below shows a typical embedded device based on ARM core. Each box 

represents a feature or function. 

ARM

Processor

Interrupt Controller

Memory Controller

AHB-external bridge

AHB Arbiter

AHB-APB bridge

Real-time clock

Serial UARTs

      

Ethernet

Counter/timers

      Console

External bus

ROM

FLASH ROM

SRAM

DRAM

 
 ARM processor based embedded system hardware can be separated into the 

following four main hardware components: 

o The ARM processor: The ARM processor controls the embedded device. 

Different versions of the ARM processor are available to suits the desired 

operating characteristics. 

o Controllers: Controllers coordinate important blocks of the system. Two 

commonly found controllers are memory controller and interrupt controller. 

o Peripherals: The peripherals provide all the input-output capability 

external to the chip and responsible for the uniqueness of the embedded 

device.  

o Bus: A bus is used to communicate between different parts of the device.  

 ARM Bus Technology 

o Embedded devices use an on-chip bus that is internal to the chip and that 

allows different peripheral devices to be interconnected with an ARM core. 

o There are two different classes of devices attached to the bus.  

 The ARM processor core is a bus master—a logical device 

capable of initiating a data transfer with another device across the 
same bus.  

 Peripherals tend to be bus slaves—logical devices capable only of 

responding to a transfer request from a bus master device. 

 AMBA Bus Protocol 

o The Advanced Microcontroller Bus Architecture (AMBA) was introduced 

in 1996 and has been widely adopted as the on-chip bus architecture used 

for ARM processors.  

o The first AMBA buses introduced were the ARM System Bus (ASB) and 

the ARM Peripheral Bus (APB).  

o Later ARM introduced another bus design, called the ARM High 

Performance Bus (AHB). 

o AHB provides higher data throughput than ASB because it is based on a 

centralized multiplexed bus scheme rather than the ASB bidirectional bus 

design. 

 MEMORY 

o An embedded system has to have some form of memory to store and 

execute code. 

o Figure below shows the memory trade-offs: the fastest memory cache is 

physically located nearer the ARM processor core and the slowest 

secondary memory is set further away. 

o Generally the closer memory is to the processor core, the more it costs and 

the smaller its capacity. 

 

10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2 L2 



 

 
 PERIPHERALS 

o Embedded systems that interact with the outside world need some form of 

peripheral device. 

o Controllers are specialized peripherals that implement higher levels of 

functionality within the embedded system. 

o Memory controller: Memory controllers connect different types of 

memory to the processor bus.  

o Interrupt controller: An interrupt controller provides a programmable 

governing policy that allows software to determine which peripheral or 

device can interrupt the processor at any specific time.  

 

3 

 
• An ARM core as functional units connected by data buses, as shown in 

Figure1, where, the arrows represent the flow of data, the lines 

represent the buses, and the boxes represent either an operation unit 

or a storage area. 

• The instruction decoder translates instructions before they are executed.  

• The ARM processor, like all RISC processors, uses a load - store 

architecture.  

• Load instructions copy data from memory to registers, and conversely the 

store instructions copy data from registers to memory.  

• There are no data processing instructions that directly manipulate data in 

memory. 

• ARM instructions typically have two source registers, Rn and Rm, and a 

single destination register, Rd. Source operands are read from the 
register file using the internal buses A and B, respectively. 

• The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) 

takes the register values Rn and Rm from the A and B buses and 

computes a result.  

• Data processing instructions write the result in Rd directly to the register 

file.  

• Load and store instructions use the ALU to generate an address to be held 

in the address register and broadcast on the Address bus. 

• One important feature of the ARM is that register Rm alternatively can be 

preprocessed in the barrel shifter before it enters the ALU. 

• After passing through the functional units, the result in Rd is written back 

 

 

 

 

[03] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[07] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2 L2 



 

to the register file using the Result bus.  

• • For load and store instructions the incrementer updates the address 

register before the core reads or writes the next register value from or 

to the next sequential memory location 

 

4   Each processor mode is either privileged or nonprivileged.  

 A privileged mode allows read-write access to the cprs.  

 A nonprivileged mode only allows read access to the control field in the cpsr 

but allows read-write access to the conditional flags. 

 There are seven processor modes : six privileged modes and one 

nonprivileged mode.  

 The privilege modes are abort, fast  interrupt request , interrupt request, 

supervisor, system and undefined. The nonprivileged mode is user. 

1. The processor enter abort mode when there is a failure to attempt to 

access memory.   

2. Fast interrupt request and interrupt request modes correspond to the 

two interrupt levels available on the ARM processor.  

3. Supervisor mode is the mode that the processor is in after reset and is 

generally the mode that an operating system kernel operates in.  

4. System mode is a special version of user mode that allows full read-write 

access to the cpsr. 

5. Undefined mode is used when the processor encounters an instruction 

that is undefined or not supported by the implementation. User mode is 

used for program and applications. 

 
State of the core determines which instruction set is being executed.  Three instruction sets: 
ARM, Thumb and Jazelle. ARM instruction set is only active when the processor is in ARM 

state.  Thumb instruction set is only active in Thumb state.  Intermingle of sequential ARM, 

Thumb, and Jazelle instructions not allowed Jazelle J and Thumb T bits in the CPSR reflects 

the state of the processor. If both J and T bits are 0, the processor is in ARM state and executes 

ARM instructions. (During power on ) If the T bit is 1, then the processor is in Thumb state.  

To change states the core executes a specialized branch instruction. 

Jazelle executes 8-bit instructions. It is  hybrid mix of software and hardware designed to speed 

up the execution of Java byte codes. It requires the Jazelle technology plus a specially modified 

version of the Java virtual machine. Note that the hardware portion of Jazelle only supports a 

subset of the Java bytecodes; the rest are emulated in software. 

 

[05] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[05] 

 

 

 

 

 

 

 

 

CO2 L2 



 

 
 

5 There are three core extensions wrap around ARM processor:  cache and tightly coupled 

memory, memory management and the coprocessor interface. 

1. Cache and tightly coupled memory: The cache is a block of fast memory placed between 

main memory and the core. With a cache the processor core can run for the majority of the 

time without having to wait for data from slow external memory.  

ARM has two forms of cache. The first found attached to the Von Neumann-style cores. It 
combines both data and instruction into a single unified cache as shown in the figure 1 below. 

 
 A cache provides an overall increase in performance but will not give predictable 

execution.  

 But for real-time systems it is paramount that code execution is deterministic. 

 This is achieved using a form of memory called tightly coupled memory (TCM).  

 TCM is fast SRAM located close to the core and guarantees the clock cycles required 

to fetch instructions or data. 

 By combining both technologies, ARM processors can behave both improved 

performance and predictable real-time response. The following diagram shows an 

example of core with a combination of caches and TCMs as shown in figure 

 
Memory management:   

 Embedded systems often use multiple memory devices. It is usually necessary to have 

a method to help organize these devices and protect the system from applications 

[10] CO2 L2 



 

trying to make appropriate accesses to hardware.  

 This is achieved with the assistance of memory management hardware.  

 ARM cores have three different types of memory management hardware- no 

extensions provide no protection, a memory protection unit (MPU) providing limited 

protection and a memory management unit (MMU) providing full protection. 

o Nonprotected memory is fixed and provides very little flexibility. It 

normally used for small, simple embedded systems that require no protection 

from rogue applications. 

o Memory protection unit (MPU) employs a simple system that uses a 

limited number of memory regions. These regions are controlled with a set of 

special coprocessor registers, and each region is defined with specific access 

permission but don’t have a complex memory map. 
o Memory management unit (MMU)are the most comprehensive memory 

management hardware available on the ARM. The MMU uses a set of 

translation tables to provide fine-grained control over memory.  

 These tables are stored in main memory and provide virtual to 

physical address map as well as access permission. MMU designed 

for more sophisticated system that supports multitasking. 

 

3. Coprocessors:  

 A coprocessor extends the processing features of a core by extending the instruction 

set or by providing configuration registers.  

 More than one coprocessor can be added to the ARM core via the coprocessor 
interface. 

 The coprocessor can be accessed through a group of dedicated ARM instructions that 

provide a load-store type interface.  

 The coprocessor can also extend the instruction set by providing a specialized 

instructions that can be added to standard ARM instruction set to process vector 

floating-point (VFP) operations. 

 These new instructions are processed in the decode stage of the ARM pipeline. If the 

decode stage sees a coprocessor instruction, then it offers it to the relevant 

coprocessor.  

But, if the coprocessor is not present or doesn’t recognize the instruction, then the 

ARM takes an undefined instruction exception.   
 

6  The comparison instructions are used to compare or test a register with 

a 32-bit value. They update the cpsr flag bits according to the result, but 

do not affect other registers. 

 After the bits have been set, the information can be used to change 

program flow by using conditional execution.  

Syntax: <instruction> {<cond>} Rn, N 

 
 Example shown below for CMP instruction, both r0 and r1 are equal 

before the execution of the instruction. The value of the z flag prior to 

the execution is 0 and after the execution z flag changes to 1 (upper 

case of Z). 

 

[10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2 L3 



 

 

 The CMP is effectively a subtract instruction with the result discarded;  

 Similarly the TST instruction is a logical AND operation and TEQ is a 

logical XOR operation. For each, the results are discarded but the 

condition bits are updated in the cpsr. 

 

 

7 MOVE INSTRUCTIONS: 

 It copies N into a destination register Rd, where N is a register or 

immediate value. This instruction is useful for setting initial values and 

transferring data between registers. 

 

Syntax:  <instruction> {<cond>} {S} Rd, N 

 
 In the example shown below, the MOV instruction takes the contents of 

register r5 and copies them into register r7. 

 
 Data processing instructions are processed within the arithmetic and logic unit 

(ALU).  

 A unique and powerful feature of the ARM processor is the ability to shift the 32-bit 

binary pattern in one of the source registers left or right by a specific number of 

positions before it enters the ALU.  

 

 The arithmetic instructions implement addition and subtraction of 32-

bit signed and unsigned values. 

Syntax: <instruction>{<cond>} {S} Rd, Rn, N 

4*2.5 CO2 L3 



 

 
 In the following example, subtract instruction subtracts a value stored 

in register r2 from a value stored in the register r1. The result is stored 

in register r0. 

 
 Logical instructions perform bitwise operations on the two source 

registers. 

Syntax: <instruction> {<cond>} {S} Rd, Rn, N 

 

 
 

 

 

 

 

 

 

 

 

 


