
 

 

 

USN            

      

Internal Assessment Test 2 – August 2023 

Sub: Design and Analysis of Algorithm Sub Code: 21CS42 Branch: AIML &AIDS 

Date: 09/08/2023 Duration: 90 mins Max Marks: 50 Sem/Sec: 4 A OBE 

Answer any FIVE FULL Questions 
 MARKS 

CO RBT 

1 a) Design an algorithm to solve knapsack problem using dynamic programming. Apply the same to 

find an optimal solution to the knapsack instance, n = 4, W= 10 (Total Capacity) 

(p1, p2, p3, p4) = (42, 15, 20, 30) and  

(w1, w2, w3, w4) = (6, 4, 2, 5)  

 

Solution: 

Algorithm DPknapsack (n, wt, p, M) 

// input: n objects, array of weights wt, array of profits p, Max capacity M 

// Output: Total Profit (Maximum value of items that fit in knapsack) 

Begin 

     V [n+1] [m+1];     // declare table 

      for ( i = 0, i<=n; i++) 

       {  for (w = 0, w<=M; w++) 

           {      if( i == 0 || w == 0)     V[i][w] = 0; 

                   else if (wt[i] <= w) 

                               V[i][w] = max (V[i-1][w], V[i-1][w-wt[i]  + p[i])   

                           else 

                                V[i][w] = V[i-1][w];     } 

          } 

       Print V[n][w]; 

     // find the solution set 

     i = n ;    j = M; 

     while (i>0 && j>0) 

      {    if (V[i][j] == V[i-1][j] 

                  print ( i = “0” ); i--; 

            else 

                   print ( i = “1” ); i--; j= j-wt[i]; 

       }   // end while 

End 

 

1. Arrange the items according to increasing order of weights 

 
   

w 
i 

0 1 2 3 4 5 6 7 8 9 10 

Item Pi wi 0 0 0 0 0 0 0 0 0 0 0 0 

3rd  20 2 1 0 0 20 20 20 20 20 20 20 20 20 

2nd 15 4 2 0 0 20 20 20 20 35 35 35 35 35 

4th 30 5 3 0 0 20 20 20 30 35  50 50 50 50 

1st   42 6 4 0 0 20 20 20 30 42 50 62 62 62 

 

V[i, w] = max { V[i-1, w], V[i-1, w-w[i]] + P[i]} 

Total Profit = 20 + 42 = 62 

 

[10] 

Algo: 

2 + 

sorted: 

1 + 

formul

a: 1 + 

Matrix:  

5 + 

initial 

sol: 1) 

 

CO3 L3 

2 (a) Write the control abstraction of greedy approach. Discuss advantages and disadvantages of 

greedy method. 

General Method: 

Given n inputs choose a subset that satisfies some constraints. 

A subset that satisfies that constraints is called a feasible solution 

A feasible solution that maximizes or minimizes a given objective function is said to be optimal 

Often it is easy to find the optimal solution. 

 

[5] 2+3 CO3 L1 

          

 



 
Advantages:  

1. Very easy to implement 

2. Can be applied to a wide range of problems in CS, Operation research, economics etc.  

3. Typically have less time complexity. 

4. Can solve problems in real-time, such as scheduling problems or resource allocation 

problems, because it does not require the solution to be computed in advance. 

5. Often used as a first step in solving optimization problems, because they provide a good 

starting point for more complex optimization algorithms. 

6. Can be used in conjunction with other optimization algorithms, such as local search or 

simulated annealing, to improve the quality of the solution. 

7. Greedy algorithms are often faster than other optimization algorithms, such as dynamic 

programming or branch and bound, because they require less computation and memory. 

Disadvantages: 

1. The local optimal solution may not always be globally optimal. 

2. Sensitive to small changes in the input, which can result in large changes in the output. 

This can make the algorithm unstable and unpredictable in some cases. 

3. Relies heavily on the problem structure and the choice of criteria used to make the local 

optimal choice. If the criteria are not chosen carefully, the solution produced may be far 

from optimal. 

4. May require a lot of preprocessing to transform the problem into a form that can be 

solved by the greedy approach. 

 
    (b) What is dynamic programming technique? Compare Dynamic Programming with Greedy 

Technique and Divide and conquer strategy. 

 

Dynamic programming is a technique for solving problems with overlapping subproblems. 

Typically, these subproblems arise from a recurrence relating a solution to a given problem 

with solutions to its smaller subproblems of the same type. Dynamic programming suggests 

solving each smaller subproblem once and recording the results in a table from which a solution 

to the original problem can be then obtained.  

It can be considered as both mathematical optimization technique and algorithmic paradigm. It 

is a general but powerful optimization technique.  

Simplifying a complicated problem by breaking it down into simpler sub-problems in a 

recursive manner. These sub-problems are solved and then re-used. This leads to concept of 

Optimal Substructure. 

 

Dynamic Programming Divide and Conquer 

Divides a problem into multiple sub-

problems and uses either the top-down 

or bottom -up strategy to solve 

problems 

Uses the top-down approach for 

solving problems 

Subproblems are overlapping Subproblems are independent 

Suitable for solving optimization 

problems 

Suitable for solving non-optimization 

problems 

Dynamic Programming Greedy Approach 

Useful for solving multistage 

optimization problems 

Useful for solving optimization 

problems 

[5]  

1+2+2 

CO4 L1 



Generate multiple sequences of 

solutions for the given problem 

Generates only one solution sequence  

Definitely gives optimal solution (if 

exists) 

May or may not give optimal Solution 

 
3 (a)  How many bits may be required for encoding the message “MISSISSIPI”? Use Huffman 

coding for encoding. 

Characters M I S P 

Frequency 1 4 4 1 

1. Sort in ascending order of frequencies  {M, P, I, S}      {1,1,4,4} 

2. Pick least two frequencies 

 

 

 

 

 

 

       3.   The combined frequency {2} replaces M and P. New list of frequencies is {2, 4, 4}. 

       4.   Again pick two least frequencies 

6 = 2+ 4 (combined frequency)  

5. 6 replaces I. New list of frequencies is {4, 6} 

6. Pick least two frequencies 

 

 

 

 

 

 

7. Assign 0 and 1 to the left and right child of each node. 

 

 

 

 

 

 

 

Codewords:  

M: 100 

P: 101 

I:  11 

S: 0  

Bits: 3*1 + 3* 1 + 2* 4 + 1* 4 = 3+3+8+4 = 18 

 

[5] 

Freq 1 

+ 

codew

ord 3 + 

bits 1 

CO3 L3 

  (b) Define Heap. Write bottom-up heap construction algorithm and compute its efficiency. 

 

Heap can be defined as a binary tree with keys assigned to its nodes (one key per node) such 

that following two conditions are met: 

1. Tree’s shape Requirement- Binary tree is complete, that is, all its levels are full 

except possibly the last level, where only some rightmost leaves may be missing. 

2. The parental dominance requirement- the key at each node is greater than or equal 

to the keys at its children. (for max-heap) 

BuildHeap( A, n) 

{    for i = n/2 to 1 

         MaxHeapify(A, n, i) 

} 

MaxHeapify (A, n, i) 

{ 

     largest = i; 

[5] 

1+3+1 

CO2 L3 



      lchild = 2*i; 

      rchild = 2*i +1; 

      while(lchild<= n && A[lchild] > A[largest]) 

                  largest = lchild; 

      while (rchild <= n && A[rchild]> A[largest]) 

                  largest = rchild; 

        if(largest != i) 

          {swap (A[largest] , A[i]) 

             heapify(A, n, largest) 

           } 

   } 

Heapsort (A, n) 

{ 

      BuildHeap( A, n); 

      // Delete the elements 

     for (i = n; i> = 1; i --) 

           Swap (A[1], A[i]); 

           MaxHeapify( A, n, i); 

} 

Two steps: 

 Creation and Deletion 

Insertion (Creation) 

Inserting 1 element:      Best case: O(1) 

Worst Case: create an array of numbers. The number to be inserted is added as the last element 

of an array. To bring in to its place in a heap, few elements have to be swapped within an array.  

Comparing and swapping requires Time= O(n) 

   

Deletion:  

Deleting 1 element:  

      Best case: O(1) (only one element in heap) 

      Worst case: O(log n). Traversing down the tree height. 

                 For n elements : O(n log n) 

Total time complexity for Heap Sort: O(n) + O(n log n)  

                                                                  = O(n log n) 

 
4 (a) State the greedy strategy to solve the Job Sequencing with deadlines problem. Design an 

algorithm to solve the same and analyse the same. 

• The sequence of jobs on a single processor with deadline constraints is called as Job 

Sequencing with Deadlines. 

Given an array of n jobs, Every Job is assigned a deadline    di >= 0  for any job I , Every Job 

has an associated Profit    pi >= 0 

Conditions: 

1. Profit is earned if and only if the job is completed by its deadline. 

2. Every Job takes a single unit of time for processing. 

3. Only one machine (uniprocessor) is available for job. 

4. Pre-emption is not allowed 

Goal is to choose a subset of jobs such that the profit is maximized. 

• Solution subset J of jobs such that each job in this subset can be completed by its 

deadline. 

• Value of a feasible solution J is the sum of the profits of the Jobs in J  

• ∑ iϵ J   pi 

The greedy strategy to solve job sequencing problem is: 

 “ At each time, select the job that satisfies the constraints and gives the maximum profit” 

Algorithm GreedyJob (d, J, n) 

// Input: Arrays of profit an deadlines for each job.      n is the number of jobs 

// Output: Set of Jobs J that can be completed by the deadlines. 

Begin 

     Identify maximum number of timeslots. 

     Arrange the jobs in decreasing order of profits. 

[6] 
CO3 L2 



     J = {1};      // initialize the solution set 

     for i =2 to n do 

     {          if (all jobs in J U {i} can be completed by their deadlines) then J = J U {i}; 

     } 

 End 

Note: For each Job (mi) do   linear search to find particular slot in array of timeslots. 

Analysis: 

1. Identify the maximum number of timeslots        O(1) 

2. Arrange the jobs in decreasing order                O( n log n) 

3. Do linear search to find particular slot in array of timeslots 

If  Number of Jobs is m 

    Maximum deadlines or number of jobs added to the solution set = n 

 Then, linear search takes O(n x m) time  on an average 

 In worst case, m <<< n ,        The time take is O(n2). 

Thus, the total time taken = O(1) + O(n logn) +O (n2)      = O(n2) 

 
     (b) Consider the below table for Jobs given with profit and deadline. Find the maximum profit 

earned. 

Job J1 J2 J3 J4 J5 J6 J7 J8 J

9 

Profit 15 20 30 18 18 10 23 16 2

5 

Deadline 7 2 5 3 4 5 2 7 3 

 

1. Identify the maximum number of timeslots required  

  = min (n, max (d[ ]))   where, n= number of jobs 

        d[ ] = array of deadlines 

   = min (9, 7) = 7 

Arrange the Jobs in decreasing order of profit 

 

Job Slot Assigned Solution Profit 

- - ᶲ - 

J3 [ 4,5] J3 30 

J9 [2,3][4,5] J9, J3 30 + 25 = 55 

J7 [1,2] [2,3][4,5] J7, J9, J3 55 + 23 = 78 

J2 [0,1][1,2][2,3][4,5] J2, J7, J9, J3 78 + 20 = 98 

J4 [0,1][1,2][2,3][4,5] J2, J7, J9, J3 98 

J5 [0,1][1,2][2,3][3,4][4,5] J2, J7, J9, J5, J3 98 + 18 = 116 

J8 [0,1][1,2][2,3][3,4][4,5][6,7] J2, J7, J9, J5, J3, 

8 

116 + 16 = 132 

J1 [0,1][1,2][2,3][3,4][4,5][5,6][6,7] J2, J7, J9, J5,J3, 

J1, J8 

132+15 = 147 

J6 [0,1][1,2][2,3][3,4][4,5][5,6][6,7] J2, J7, J9, J5,J3, 

J1, J8 

132+15 = 147 

 

Solution Set: J ={J2, J7, J9, J5,J3, J1, J8} 

             Profit  = 147 

 

[4] 

timeslo

ts 1 +3 

CO3 L3 

5 (a) What is topological sorting?  Apply the same to the below graph using  

a) DFS algorithm        b) source removal method. 

Scheduling a sequence of jobs or tasks based on their dependencies.   

    Jobs  ---- Vertices          Edge  (x to y) ------x should be completed before y 

E.g: When washing clothes, the washing machine must finish washing before we can 

put these clothes in a dryer. 

 

[10] 

2+4+4 

CO2 L3 



 
      

 

 



 

 
6 (a) Write Prim’s algorithm and apply it to obtain the minimum cost spanning tree of the following 

weighted graph: 

 

[6] CO3 L2 



 
 

Algorithm Prim(G) 

// Input: Graph G(V,E) 

// Output: Minimum Spanning Tree T 

Begin 

       s= pick up any vertex of G 

        VT = {s} 

        ET   = Φ                      // Initially T(VT, ET ) has only starting vertex and no edges 

         n= |V| 

         repeat |n| - 1 times              // n is number of vertices and T should have exactly n-1 edges 

            Pick an edge ( v, u) such that v ϵ VT and u ϵ  V-VT  and there is no cycle 

  VT = V  U  {v} 

               ET = ET  U  {v, u} 

           End repeat 

           return T(VT, ET )  

End 

 

 
 

  (b) Write Dijkstra’s algorithm to find single source shortest path and analyse the algorithm. 

 

Approach: Greedy 

Input: Weighted graph G=(V,E) and source vertex vϵ V, such that all edge weights are 

[4] 

3+1 

CO2 L1 



nonnegative 

Output: Lengths of shortest paths ( or the shortest paths themselves) from a given source vertex 

vϵ V to all other vertices. 

Algorithm Dijkstra ( Graph, source) 

// Input: A weighted connected graph G= (V,E) with non negative weights and its vertex s  

// Output: The length d(v) of a shortest path from s to v 

 

Begin 

          Intialize (Q)                  ------------  Creation of Priority Queue takes O(|V|) time 

for (every vertex v in G)  do            -----------repeated |V| times  

        d(v) = ∞ 

        Insert (Q, v, d(v))                        ------- log |V| * |V| times 

  d(s) = 0;                                        ---------O ( 1) 

Decrease(Q, s, d(s))  // update priority of s with d(s)    ------------ O ( |V|log |V|)  

VT   = Φ                                          ---------O ( 1) 

for  (i = 0 to |V| -1) do 

      u= DeleteMin (Q)    // delete the minimum priority element ------- insertion in priority Queue   

                                                                                 --- O(log |V|) 

      VT = VT U  {u}                                        ------ O(1) 

      for (every vertex u in V- VT  adjacent to u) do 

            if  (d(u) + w(u, v) < d(v) ) then 

                  d(v) = d(u) + w(u, v)                    Relaxation checks every edge = O (|E| log |V| ) 

 

                  Decrease(Q, u, d(u))    // update priority of u with d(u) 

End 

 

Total complexity =  O(|V|) + O( |V| log|V|) + O( |V| log|V|) + O( log|V|) + O( |E| log|V|)  

    |E| >> |V| 

Therefore,  

Complexity = O( |E| log|V|) 
 

CI CCI HOD/AIML 

 

 

 

 

 

 

  

 


