

USN

Department of AI-ML and AI-DS
Internal Assessment Test 2 – August 2023

Sub: Microcontroller & Embedded Systems Sub Code: 21CS43 Branch: AI-ML & AI-DS

Date: 08-08-23 Duration: 90 min’s Max Marks: 50 Sem / Sec: 4th OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. Explain in detail branch instructions of ARM processor. [10] CO2 L2

2. Discuss the Load Multiple register instructions of ARM and Discuss the Stack

implementation with example.

[10] CO2 L2

3. Write an ALP to sort an array in ascending order using bubble sort for ARM 7 controller
with appropriate comments.

[10] CO2 L3

4. Discuss the C data types of embedded system and Local variable types with example

program of “Checksum” with arguments passed and returned of “short” type.

[10] CO1 L3

5. Discuss the classification and purpose of embedded system in detail. [10] CO3 L2

6. Differentiate between General Computing and Embedded system with examples. [10] CO3 L2

7. Differentiate between i. RISC and CISC ii. Harvard and Von-Neumann architectures [10] CO3 L2

USN

Department of AI-ML and AI-DS
Internal Assessment Test 2 – August 2023

Sub: Microcontroller & Embedded Systems Sub Code: 21CS43 Branch: AI-ML & AI-DS

Date: 08-08-23 Duration: 90 min’s Max Marks: 50 Sem / Sec: 4th OBE

Answer any FIVE FULL Questions MARKS CO RBT

1. Explain in detail branch instructions of ARM processor. [10] CO2 L2

2. Discuss the Load Multiple register instructions of ARM and Discuss the Stack

implementation with example.

[10] CO2 L2

3. Write an ALP to sort an array in ascending order using bubble sort for ARM 7 controller

with appropriate comments.

[10] CO2 L3

4. Discuss the C data types of embedded system and Local variable types with example

program of “Checksum” with arguments passed and returned of “short” type.

[10] CO1 L3

5. Discuss the classification and purpose of embedded system in detail. [10] CO3 L2

6. Differentiate between General Computing and Embedded system with examples. [10] CO3 L2

7. Differentiate between i. RISC and CISC ii. Harvard and Von-Neumann architectures [10] CO3 L2

CI: CCI: HOD:

Internal Assessment Test 2– August. 2023

Sub: Microcontroller & Embedded Systems Sub Code: 21CS43 Branch: AI-ML & AI-DS

Date: 08-08-23 Duration: 90 Minutes Max Marks: 50 Sem / Sec: 4th OBE

Scheme and Solution

MARKS

CO

RBT

1 A branch instruction changes the flow of execution or is used to call a routine.

 This type of instruction allows programs to have subroutines, if-then-else structures,

and loops.

 The change of execution flow forces the program counter (pc) to point to a new

address.

 T refers to the Thumb bit in the cpsr.

 When instruction set T, the ARM switches to Thumb state.

 The example shown below is a forward branch. The forward branch skips three

instructions.

 The branch with link (BL) instruction changes the execution flow in addition

overwrites the link register lr with a return address. The example shows below a

fragment of code that branches to a subroutine using the BL instruction.

 The branch exchange (BX) instruction uses an absolute address stored in register

Rm. It is primarily used to branch to and from Thumb code. The T bit in the cpsr is

updated by the least significant bit of the branch register.

 Similarly, branch exchange with link (BLX) instruction updates the T bit of the cpsr

with the least significant bit and additionally sets the link register with the return

address.

CO2 L2

2 Load-store multiple instructions can transfer multiple registers between memory and

the processor in a single instruction. The transfer occurs from a base address register

Rn pointing into memory.

10

CO2 L2

 Multiple-register transfer instructions are more efficient from single-register transfers

for moving blocks of data around memory and saving and restoring context and

stacks.

Syntax: <LDM|STM>{<cond>}<addressing mode> Rn{!},<registers>{ˆ}

Addressing mode for load-store multiple instructions

 Table below shows the different addressing modes for the load-store

multiple instructions.

Example:

 mem32[0x8001c] =0x04

 If LDMIA is replaced with LDMIB post execution the content of

registers is shown below

STACK OPERATIONS

 The ARM architecture uses the load-store multiple instructions to carry out stack

operations.

 The pop operation (removing data from a stack) uses a load multiple instruction;

similarly, the push operation (placing data onto the stack) uses a store multiple

instruction.

 When you use a full stack (F), the stack pointer sp points to an address that is the last

used or full location.

 In contrast, if you use an empty stack (E) the sp points to an address that is the first

unused or empty location.

 A stack is either ascending (A) or descending (D). Ascending stacks grow towards

higher memory addresses; in contrast, descending stacks grow towards lower

memory addresses.

 Addressing modes for stack operation

 The LDMFD and STMFD instructions provide the pop and push functions,

respectively.

 Example1: With full descending

 Figure: STMFD instruction full stack push operation.

Example 2: With empty descending

 Figure: STMED instruction empty stack push operation.

3 AREA CODE1,CODE,READONLY

ENTRY
LDR R0,=INPUT

LDMIA R0,{R1-R10} ; load the registers r1 to r10 from memory r0

holding starting address

LDR R0,=SORT

STMIA R0,{R1-R10} ;store the registers r1 to r10 to memory r0

holding starting address

MOV R2,#9 ; R2=10 NUMBER COUNT i=9

OUTER LDR R0,=SORT ; R0 load the address of variable input

MOV R3,R2 ; inner loop count j=i

REPEAT LDR R4,[R0],#4

; load element from memory and increment memory pointer by 4

LDR R5,[R0] ; load next element from memory
CMP R4,R5 ; compare two consecutive elements

BLE SKIP

; if first element is less than second element than jump to label skip

SWP R5,R4,[R0] ; otherwise swap the elements

SUB R0,R0,#4

SWP R4,R5,[R0]

ADD R0,R0,#4

SKIP SUB R3,#1 ; decrease inner loop count j=j-1

CMP R3,#0 ; compare j==0

BNE REPEAT ; if j!= 0 repeat the inner loop

SUB R2,#1 ; decrease outer loop count i=i-1
CMP R2,#0 ; compare i==0

BNE OUTER ; if i!=0 repeat the outer loop

STOP B STOP

INPUT DCD 0X11

DCD 0X88

DCD 0X33

DCD 0X77

DCD 0XAA

DCD 0X44

DCD 0X99

DCD 0X66

DCD 0X22
DCD 0X55

AREA DATA1,DATA,READWRITE

SORT SPACE 40

END

[6+4]

CO2 L3

4 Compilers armcc and gcc use the datatype mappings in Table for an ARM target. The

exceptional case for type char is worth noting as it can cause problems when you are porting

code from another processor architecture. A common example is using a char type variable i as

a loop counter, with loop continuation condition i 0. As i is unsigned for the ARM compilers,

the loop will never terminate. Fortunately armcc produces a warning in this situation: unsigned

comparison with 0. Compilers also provide an override switch to make char signed. For

example, the command line option -fsigned-char will make char signed on gcc. The command

line option -zc will have the same effect with armcc.

[10]

CO1 L3

C compiler datatype mappings.

C Data Type Implementation

char unsigned 8-bit byte

short signed 16-bit halfword

int signed 32-bit word

long signed 32-bit word

long long signed 64-bit double word

the data packet contains 16-bit values and we need a 16-bit checksum. It is tempting to write

the following C code:

short checksum_v3(short *data)

{
unsigned int i; short sum = 0;

for (i = 0; i < 64; i++)

{

sum = (short)(sum + data[i]);

}

return sum;

}

You may wonder why the for loop body doesn’t contain the code

sum += data[i];

With armcc this code will produce a warning if you enable implicit narrowing cast warnings

using the compiler switch -W+ n. The expression sum + data[i] is an integer and so can only be

assigned to a short using an (implicit or explicit) narrowing cast. As you can see in the

following assembly output, the compiler must insert extra instructions to implement the

narrowing cast:

checksum_v3

MOV r2,r0 ; r2 = data
MOV r0,#0 ; sum = 0
MOV r1,#0 ; i = 0

checksum_v3_loop
ADD r3,r2,r1,LSL #1 ; r3 = &data[i]
LDRH r3,[r3,#0] ; r3 = data[i]
ADD r1,r1,#1 ; i++
CMP r1,#0x40 ; compare i, 64
ADD r0,r3,r0 ; r0 = sum + r3
MOV r0,r0,LSL #16

MOV r0,r0,ASR #16 ; sum = (short)r0
BCC checksum_v3_loo

p
; if (i<64) goto
loop

MOV pc,r14 ; return sum

5 The classification of embedded system is based on following criteria's:

• On generation

• On complexity & performance

• On deterministic behavior

• On triggering

 On generation:

1. First generation (1G):

• Built around 8bit microprocessor & microcontroller.

• Simple in hardware circuit & firmware developed.

• Examples: Digital telephone keypads.

2. Second generation (2G):
• Built around 16-bit µp & 8-bit µc.

• They are more complex & powerful than 1G µp & µc.

• Examples: SCADA systems

[4+6] CO3 L2

3. Third generation (3G):

• Built around 32-bit µp & 16-bit µc.

• Concepts like Digital Signal Processors (DSPs), Application Specific

Integrated Circuits(ASICs) evolved. Examples: Robotics, Media, etc.

4. Fourth generation:

• Built around 64-bit µp & 32-bit µc.

• The concept of System on Chips (SoC), Multicore Processors evolved.

• Highly complex & very powerful. Examples: Smart Phones.

 On complexity & performance:

1. Small-scale:

 Simple in application need

 Performance not time-critical.
 Built around low performance& low cost 8 or 16 bit µp/µc. Example: an

electronic toy

2. Medium-scale:

 Slightly complex in hardware & firmware requirement.

 Built around medium performance & low cost 16 or 32 bit µp/µc.

 Usually contain operating system.

 Examples: Industrial machines.

3. Large-scale:

 Highly complex hardware & firmware.

 Built around 32 or 64 bit RISC µp/µc or PLDs or Multicore-Processors.

 Response is time-critical.
 Examples: Mission critical applications.

 On deterministic behavior:

 This classification is applicable for “Real Time” systems.

 The task execution behavior for an embedded system may be deterministic or

non- deterministic.

 Based on execution behavior Real Time embedded systems are divided into

Hard and Soft.

 On triggering

 Embedded systems which are “Reactive” in nature can be based on

triggering.

 Reactive systems can be:
 Event triggered

 Time triggered

PURPOSE OF EMBEDDED SYSTEM
1. Data Collection/Storage/Representation

 Embedded system designed for the purpose of data collection performs

acquisition of data from the external world.

 Data collection is usually done for storage, analysis, manipulation

and transmission.

 Data can be analog or digital.

 Embedded systems with analog data capturing techniques collect data

directly in the form of analog signal whereas embedded systems with digital data
collection mechanism converts the analog signal to the digital signal using analog to

digital converters.

 If the data is digital it can be directly captured by digital embedded system.

 A digital camera is a typical example of an embedded System with data

collection/storage/representation of data.

 Images are captured and the captured image may be stored within

the memory of the camera. The captured image can also be presented to the user

through a graphic LCD unit.

2. Data communication

 Embedded data communication systems are deployed inapplications from

complex satellite communication to simple home networking systems.

 The transmission of data is achieved either by a wire-lin medium or by a
wire-less medium. Data can either be transmitted by analog means or by digital

means.

 Wireless modules-Bluetooth, Wi-Fi.

 Wire-line modules-USB, TCP/IP.

 Network hubs, routers, switches are examples of dedicated data transmission

embedded systems.

3. Data signal processing

 Embedded systems with signal processing functionalities are employed in

applications demanding signal processing like speech coding, audio video codec,

transmission applications etc.

 A digital hearing aid is a typical example of an embedded system employing

data processing. Digital hearing aid improves the hearing capacity of hearing impaired

person.

4. Monitoring

 All embedded products coming under the medical domain are with

monitoring functions. Electro cardiogram machine is intended to do the monitoring of

the heartbeat of a patient but it cannot impose control over the heartbeat.

 Other examples with monitoring function are digital CRO, digital multi-
meters, and logic analyzers.

5. Control

 A system with control functionality contains both sensors and actuators

Sensors are connected to the input port for capturing the changes in environmental

variable and the actuators connected to the output port are controlled according to the

changes in the input variable.

 Air conditioner system used to control the room temperature to a specified

limit is a typical example for CONTROL purpose.

 6. Application specific user interface

 Buttons, switches, keypad, lights, bells, display units etc are application

specific user interfaces.
 Mobile phone is an example of application specific user interface.

 In mobile phone the user interface is provided through the keypad, system

speaker, vibration alert etc.

6 The Embedded System and the General purpose computer are at two extremes. The

embedded system is designed to perform a specific task whereas as per definition the general

purpose computer is meant for general use. It can be used for playing games, watching
movies, creating software, work on documents or spreadsheets etc. Following are certain

specific points that differentiates between embedded systems and general purpose

computers:

[10]

CO3 L2

7 [5+5] CO3 L2

