

USN

Internal Assessment Test 3 – September 2023

Date 11/09/2023 Duration 90 mins Max Marks 50 Sem/Sec 4 A			,	ember 2023	- Sept	ent Test 3 -	ssessm	nal A	Inter			
Answer any FIVE FULL Questions KS 1	AIML &AIDS	3ranch:	21CS42	Sub Code			thm	Algori	sis of	Analy	Design and	Sub
Apply Branch and Bound to the following instance of assignment problem and obtain optimal solution.	OBE		4 A	Sem/Sec	50	Iax Marks	ns N	90 mi	ation	Dura	11/09/2023	Date
KS Apply Branch and Bound to the following instance of assignment problem and obtain optimal solution. J1 J2 J3 J4 Person1 7 42 47 10 Person2 12 28 4 20 Person3 34 14 15 10 Person4 12 26 14 8 Person4 12 26 14 8 Person5 34 14 15 10 Person4 12 26 14 8 Person5 34 14 15 10 Person6 12 28 4 20 Person6 12 28 4 20 Person7 12 28 4 20 Person8 12 26 14 8 Person9 12 28 4 20 Person9 12 28	CO											
Apply Branch and Bound to the following instance of assignment problem and obtain optimal solution. J1 J2 J3 J4 Person1 7 42 47 10 Person2 12 28 4 20 Person3 34 14 15 10 Person4 12 26 14 8 Person4 12 26 14 8 Person5 12 28 4 20 Person4 12 26 14 8 Person4 12 26 14 8 Person5 12 28 4 20 34 14 15 10 12 24 14 8 Person5 12 28 4 20 34 14 15 10 12 24 14 8 Person6 12 28 4 20 Person7 Person8 Person	,	MAR							VC			
obtain optimal solution. J1 J2 J3 J4 Person1 7 42 47 10 Person3 34 14 15 10 Person4 12 26 14 8 Person4 12 26 14 8 Person4 12 26 14 8 Pi	CO L	[10]	roblem and	ssignment n	e of a	ing instanc	e follov			h and	Apply Branc	1
Person1 7 42 47 10 Person2 12 28 4 20 Person3 34 14 15 10 Person4 12 26 14 8 Pi 7 42 47 10 P2 12 28 4 20 P3 34 14 15 10 P4 12 26 14 8 P6 7 4 4 10 + 8 = 29 P3 34 14 15 10 P4 15 10 P4 10 2 26 14 8 P1 17 42 47 10 P2 28 4 20 P3 34 14 15 10 P4 12 26 14 8 P1 12 12 14 9	5 3	[10]	oolem una	ssignment p	.c 01 u	mg mstane	701101	i to the				-
Person 2 12 28 4 20 Person 3 34 14 15 10 Person 4 12 26 14 8 Pi							J4	J3				
Person 3 34 14 15 10 Person 4 12 26 14 8 Pi							10	47	42	7	Person1	
Person3 34 14 15 10 Person4 12 26 14 8 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							20	4	28	12	Person2	
P1 J2 J3 J4 P1 7 42 47 10 P2 12 28 4 20 P3 34 14 15 10 P4 12 26 14 8 $16 = 7 + 4 + 10 + 8 = 29$ Start 12 26 14 8 $16 = 7 + 4 + 10 + 8 = 29$ P1 J2 $16 = 7 + 4 + 10 + 8 = 29$ P1 J2 17 42 47 10							10	15	14	34	Person3	
PI 7 42 47 10 P2 12 28 4 20 P3 34 14 15 10 P4 12 26 14 8 Lb = 7 + 4 + 10 + 8 = 29 Stant Lb = 29 P1 \rightarrow J1 Lb = 29 P1 \rightarrow J2 Lb = 29 P1 \rightarrow J3 Lb = 77 P1 \rightarrow J2 Lb = 29 P1 \rightarrow J3 Lb = 77 P1 \rightarrow J3 Lb = 29 P1 \rightarrow J3 Lb = 77 P1 \rightarrow J3 Lb = 29 P1 \rightarrow J3 P1 \rightarrow J3 Lb = 29 P1 \rightarrow J3 P1 \rightarrow J3 P1 \rightarrow J3 P1 \rightarrow J4 Lb = 29 P1 \rightarrow J3 P1 \rightarrow J4 Lb = 29 P1 \rightarrow J4 Lb = 29 P1 \rightarrow J3 P1 \rightarrow J4 Lb = 29 P1 \rightarrow J3 P1 \rightarrow J4 Lb = 29 P1							8	14	26	12	Person4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								5 10	14	34	P3 P4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
12 28 4 20 12 28 4 20 12 28 4 20 12 28 4 20 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 34 14 15 10 8 80000d Novol, cold 4 12 26 14 8 8000d Novol, cold 4 12 26 14 8 8000d Novol, cold 4 16 10 10 14 14 14 12 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10					lb=40	77 (PI+					
6=7+4+10+8 =64 =77				15 10 8 14 8 w1, cot 4 + 4+14+12	2 28 34 (14) 2) 24 Bound M 26=10	4 20 15 16 16 16 16 16 16 16 16 16 16 16 16 16	(2) 28 34 14 12 24 Assured	4) 20 15 (10) 14 (8) wal, col 2	12 28 34 14 12 26	200	12 28 (4) 2 34 14 15 (12 26 14 (9.
= 29									= 64		= 7+4+10+8	16

2 (a) Give Warshall's algorithm for transitive closure. Find the transitive closure matrix for the graph whose adjacency matrix is given below:

[6]

2+ 4 CO

L

2

1	0	0	1	0
0	1	0	0	0
0	0	0	1	1
1	0	0	0	0
0	1	0	0	1

•To find the existence of path between <u>all the pair of vertices</u> in a given <u>weighted connected graph</u>. Applicable to both directed and undirected weighted graph Warshall's Algorithm is to determine Transitive Closure of a Directed graph or all paths in a directed graph using adjacency matrix. Generate Transitive Closure of a digraph with the help of DFS or BFS

Warshall's Algorithm (pseudocode and analysis)

```
ALGORITHM Warshall(A[1..n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure

//Input: The adjacency matrix A of a digraph with n vertices

//Output: The transitive closure of the digraph

R^{(0)} \leftarrow A

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] or (R^{(k-1)}[i, k] and R^{(k-1)}[k, j])

return R^{(n)}
```

Time efficiency: $\Theta(n^3)$

Space efficiency: Matrices can be written over their predecessors

Warshall's Algorithm (matrix generation)

Recurrence relating elements $R^{(k)}$ to elements of $R^{(k-1)}$ is:

```
R^{(k)}[i,j] = R^{(k-1)}[i,j] or (R^{(k-1)}[i,k] and R^{(k-1)}[k,j])
```

It implies the following rules for generating $R^{(k)}$ from $R^{(k-1)}$:

- Rule 1 If an element in row i and column j is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$
- Rule 2 If an element in row i and column j is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1's in $R^{(k-1)}$

(b) Give the control abstraction (General Algorithm) for Backtracking. Give two advantages of Backtracking.

[4] 2+ 2 CO 5

L

Algorithm backtrack(u)

//Input: node u, starts with the root of the state space tree

// Output: Result of the problem

{
 if promising (u) then
 if (u is a goal) then
 print the solution
 else
 for each v, v belongs to child(u)) do
 backtrack(v)
 end for
 end if
end if

Backtracking	Branch and Bound			
Backtracking is normally used to solve decision problems				
Nodes in the state-space tree are explored in depth-first order in the backtracking method	Nodes in the tree may be explored in depth-first or breadth-first order in branch and bound method			
It realizes that it has made a bad choice & undoes the last choice by backing up.	It realizes that it already has a better optimal solution that the pre-solution leads to so it abandons that pre-solution.			
The feasibility function is used in backtracking.	Branch-and-Bound involves a bounding function.			
The next move from the current state can lead to a bad choice	The next move is always towards a better solution			
On successful search of a solution in state-space tree, the search stops	The entire state space tree is searched in order to find the optimal solution			
from source A to vertex F.	D 3 F 1 -1 2 -1			
A 2 C B 2 3 A D D D D D D D D D D D D D D D D D D	rations 4 5 6 0 0 0 3 3 3 2 2 2 3 3 3 2 2 2 5 4 4 Particular Sedges AB. AC. AB. BE. CO. CE. BE. DG. DG. DG. BA. E. G. DG. DG. BA. E. G. DG. DG. BA. E. G. BA.	[10]	CO 4	L3
A 2 C B 2 G A B C D D D A A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D A B C D D D A B C D D D A B C D D D A B C D D D A B C D D D A B C D D D A B C D D D A B C D D D A B C D D D A B C D D D A B C D D D A B C D D D D D D D D D D D D D D D D D D	rations 4 5 6 0 0 0 AB AC AD AC AC			L

ii) NP Hard problems State Space Tree: Represent the solution space as a tree • Each edge represents a choice of one x_i • Level 0 to Level 1 edges show choice of x_1 • Level 1 to Level 2 edges show choice of x_2 • Level i - 1 to Level i edges show choice of x_i Each internal node represents a partial solution Partitions the solution space into disjoint subspaces Leaf nodes represent the complete solution (may or may not be feasible) Models the complete solution being built by choosing one component at a time NP Hard Problems: A problem is NP-hard if all problems in NP can be reduced to it in poly-time. We can see that NP-hard problems are "harder" than all problems in NP. By reduction, or more specifically reducing problem B to problem A, we mean that given a "blackbox" solver that solves A, we can also solve B by transforming the instance of B to an instance of A, and then transform the solver's solution to the instance of A to a solution to the instance of B. Observe that if A can be reduced to B and B can be reduced to C, then A can be reduced to C. What does NP-hard mean? – A lot of times you can solve a problem by reducing it to a different problem. I can reduce Problem B to Problem A if, given a solution to Problem A, I can easily construct a solution to Problem B. (In this case, "easily" means "in polynomial time."). A problem is NP-hard if all problems in NP are polynomial time reducible to it, ... Ex:- Hamiltonian Cycle Every problem in NP is reducible to HC in polynomial time. Ex:- TSP is reducible to HC. B = lcmA = gcdExample: lcm(m, n) = m * n / gcd 13 (m, n), Here, we are reducing the problem of **lcm** to already solved problem **gcd**. Draw the portion of the state space tree for m- colorings of a graph when n = 4b) CO and m = 3[6] L3 5


```
Starting Vertex = 1
151=4
  タ(ち中)=30 ; タ(ま中)=4; 男(を中)=6
 g(2, [3]) = to w (2,3) + g(3,+) = 10+4=1+
 g (2, 103) = w(2,4)+g(4,4)=5+6=11
 g (s, {2}) = w(s, 2) + g (s, 0) = 10+30 = 40
8 (3, (41) = w(2,4)+8 (44) = 26+6 = 26
g (4, [2]) = w (4,2] +g(2,4) = 5+20=35
 g (4, {25) = w[4,3] + g (3,4)= 20+4 = 24
151=2
 g(2,13,4]) = min (w(2,3)+g(3,14)),
                  w[2,4)+9(4,[8]))
             = min (10+26, 5+24) = 29
  g(s, {2,4]) = min(*{3,2}+g(2, {4}),
                    w[3,4]+g(4,121))
              = min (10+11, 20+35) = 21
  g(+ (2,2)) = min (4(4,2)+g(2,(2)))
                     w(45) = g(3, {2}))
               = min [5114, 20+42] = 19, 60 = 19
  151=3
   g(1, [2, 3,4])= min [ w(1,2] + g(2, [34]),
                       w(1,3) + 1 (3, 12,43),
                       w[1,4]+ g(4, {2,3})]
1-3-2-4-1 min (50+34, 4+21, 6+193 (25)
```

CI CCI HOD/AIML

Bellman Ford	Dijkstra's
Deals with single source shortest path	Deals with single source shortest path
Allows negative length edges but does not allow negative cycle	Does not allow both negative weights and negative cycle
It is slower than dijkstra's algorithm if more edges are present	It is faster than bellman-ford algorithm
Can be easily implemented in a distributed way	cannot be implemented in a distributed way