o EARS #

SN ey =
Internal Assessment Test 3 — September 2023
Sub Design and Analysis of Algorithm Sub Code | 21CS42 | Branch: | AIML
&AIDS
Date | 11/09/2023 | Duration | 90 mins | Max Marks | 50 | Sem/Sec 4A OBE
Answer any FIVE FULL Questions CO | R
MAR &
KS
1 Apply Branch and Bound to the following instance of assignment problem and | [10] CO |L
obtain optimal solution. 5 3
J1| J2 | J3 | J4
Personl 7 | 42 | 47 | 10
1+
Person2 | 12 | 28 | 4 20 ot
Person3 | 34 | 14 | 15 | 10 7
Person4 | 12 | 26 | 14 8

2 (a)

Give Warshall’s algorithm for transitive closure. Find the transitive closure
matrix for the graph whose adjacency matrix is given below:

O OOk
R OOk O
oO|0o|O0|Oo|o
OO IOk
RO IOIOo

*To find the existence of path between all the pair of vertices in a given
weighted connected graph. Applicable to both directed and undirected weighted
graph Warshall’s Algorithm is to determine Transitive Closure of a Directed
graph or all paths in a directed graph using adjacency matrix. Generate
Transitive Closure of a digraph with the help of DFS or BFS

Warshall’s Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[1..n, 1..n])

/Tmplements Warshall’s algorithm for computing the transitive closure
/Mnput: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
RO 4
fork < 1tondo
fori < 1tondo
for j < 1tondo
RO, j]« R*=V[i, jlor (R®V[i, k] and R*-V[k, j])
return R

Time efficiency: O(n?)

Space efficiency: Matrices can be written over their predecessors

[6]
2+

N

(b)

Warshall’s Algorithm (matrix generation)
Recurrence relating elements R® to elements of R*-D is:
R®[ij] = R*V[ij] or (R*V[i,k] and R D[k,j])

It implies the following rules for generating R® from R*-D:

Rule 1 If an element in row / and column j is 1 in R*-D,
it remains 1 in R®

Rule 2 If an element in row i and column j is 0 in R*-D,
it has to be changed to 1 in R® if and only if
the element in its row / and column % and the element
in its column j and row k are both 1’s in R*-D

-~ - n
Jeasaaibve Lleding

Give the control abstraction (General Algorithm) for Backtracking. Give two
advantages of Backtracking.

Algorithm backtrack(u)
//Input: node u, starts with the root of the state space tree
// Output: Result of the problem
{
if promising (u) then
if (uis a goal) then
print the solution
else
for each v, v belongs to child(u)) do
backtrack(v)
end for
end if
end if

[4]
2+

}
OR

Algorithm backtrack_enhanced(u)
//Input: node u, starts with the root of the state space tree
// Output: Result of the problem
{
generate children v of node u
for each v, v belongs to child(u)) do

if promising (u) then
if (uis a goal) then

print the solution

else
backtrack _enhanced(v)
end if
end if
end for
}
Advantages of Backtracking
*It has a brute-force nature; due to this reason, it can solve maximum problems.
*Backtracking problems are very intuitive to code.
*The step-by-step representation of the backtracking solution is straightforward
to understand.
*You can easily debug backtracking code.
*The backtracking code contains less Lines of code (LOC). Most backtracking
codes are generally a few lines of recursive function code.

3 (a)

(b)

Construct state space tree for solving 4 Queen’s problem using backtracking

The solution for 4 queen problem are :

2413 & (3142

Compare Backtracking design technique with branch and bound technique.

[6]

[4]

N

Backtracking Branch and Bound

Backtracking is normally used to solve Branch and bound is used to solve optimization

decision problems problems

Nodes in the state-space tree are
Nodes in the tree may be explored in depth-first or

explored in depth-first order in the
& 5 breadth-first order in branch and bound method

backtracking method

It realizes that it already has a better optimal
It realizes that it has made a bad choice &
solution that the pre-solution leads to so it

undoes the last choice by backing up.
abandons that pre-solution.

The feasibility function is used in
Branch-and-Bound involves a bounding function.

backtracking.

The next move from the current state can
The next move is always towards a better solution
lead to a bad choice

On successful search of a solution in The entire state space tree is searched in order to

state-space tree, the search stops find the optimal solution

Consider the following weighted graph. Bellman-Ford algorithm is
implemented on the given graph with source A. Find the shortest distance
from source A to vertex F.

pop |59 |3
5.8) | Explain the following concepts: [4] Co L2
2+2 5

)] State Space Tree

i) NP Hard problems

State Space Tree:
® Represent the solution space as a tree

® Each edge represents a choice of one x;
Level 0 to Level 1 edges show choice of x,
Level 1 to Level 2 edges show choice of x,
Level © — 1 to Level 1 edges show choice of x;

® Each internal node represents a partial solution
Partitions the solution space into disjoint subspaces

® Leaf nodes represent the complete solution (may or may
not be feasible)

® Models the Complctc solution being built by Choosing
one component at a time

NP Hard Problems: A problem is NP-hard if all problems in NP can be
reduced to it in poly-time. We can see that NP-hard problems are
“harder” than all problems in NP. By reduction, or more specifically
reducing problem B to problem A, we mean that given a “blackbox”
solver that solves A, we can also solve B by transforming the instance
of B to an instance of A, and then transform the solver’s solution to the
instance of A to a solution to the instance of B. Observe that if A can be
reduced to B and B can be reduced to C, then A can be reduced to C.

What does NP-hard mean? — A lot of times you can solve a problem by
reducing it to a different problem. | can reduce Problem B to Problem A
if, given a solution to Problem A, | can easily construct a solution to
Problem B. (In this case, "easily" means "in polynomial time.*).

A problem is NP-hard if all problems in NP are polynomial time reducible
toit, ...

Ex:- Hamiltonian Cycle

Every problem in NP is reducible to HC in polynomial time. Ex:- TSP is
reducible to HC.

B=Icm A=gcd
Example: Icm(m, n) =m * n/gcd 13 (m, n),

Here, we are reducing the problem of Icm to already solved problem gcd.

b)

Draw the portion of the state space tree for m- colorings of a graph when n =4
andm=3

[6]

L3

A 4-node graph and all possible 3-colorings

6. (a)

b)

Give the differences between Bellman-Ford algorithm and Dijkstra’s
algorithm. (**%*)

check the next page

Solve the following Travelling Salesperson which is represented as a graph
using dynamic programming. Start city is 1.

[4]

[6]

L2

L3

Cl

CClI
Bellman Ford Dijkstra’s
Deals with single source shortest | Deals with single source
path shortest path
Allows negative length edges but | Does not allow both negative
does not allow negative cycle weights and negative cycle
It is slower than dijkstra’s It is faster than bellman-ford
algorithm if more edges are algorithm
present

Can be easily implemented in a cannot be implemented in a
distributed way distributed way

HOD/AIML

