
CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assessment Test 1 – August 2023

Sub: Software Engineering Sub
Code: 22MCA23

Date: 02/08/2023 Duration: 90 min’s Max Marks: 50 Sem: II Branch MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I MARKS
OBE

CO RBT
1 a. Define software engineering? Explain the essential attributes of good software.

b. Discuss the key challenges facing software engineering professionals.
OR

[6 + 4] CO1 L1

2 Discuss the process involved in waterfall and incremental developmental model
with advantages and disadvantages. [10] CO1 L1

3
PART II

a. Explain the phases of RUP with a neat diagram.
b. Explain ACM/IEEE code of ethics.

OR

[5+5]
CO2 L1

4 Explain Prototyping model of software development with a neat diagram. Discuss
the different types of Prototype models. [10] CO1 L1

5
PART III

Differentiate between Agile and Plan-driven methodologies
OR [10] CO2 L3

6 Explain in detail about extreme programming.
[10] CO2 L3

7
PART IV

What are Functional and Non-Functional Requirements? Explain the different types of
Non-functional requirements.

[10] CO2 L2

8
OR

Explain the format and characteristics of good SRS. [10]
CO1 L1

9
PART V

Define Requirements Engineering. Explain the activities of requirement engineering
process.

OR
[10] CO2 L1

10 Explain the different Techniques for Requirement validation? [10] CO2 L2



SOLUTION

1. a. Define software engineering? Explain the essential attributes of good software
Ans. Software Engineering is the study of developing software. It is the application of a systematic,

disciplined, quantifiable approach to the development, operation and maintenance of software.

Essential attributes of a good software:

b. Discuss the key challenges facing software engineering professionals.
Ans. The methods used to develop small or medium-scale projects are not suitable when it comes to the
development of large-scale or complex systems.

a. Changes in software development are unavoidable. In today’s world, changes occur rapidly and
accommodating these changes to develop complete software is one of the major challenges faced
by the software engineers.

b. The advancement in computer and software technology has necessitated for the changes in nature
of software systems. The software systems that cannot accommodate changes are not of much
use. Thus, one of the challenges of software engineering is to produce high quality software
adapting to the changing needs within acceptable schedules. To meet this challenge, the
object-oriented approach is preferred, but accommodating changes to software and its
maintenance within acceptable cost is still a challenge.

c. Informal communications take up a considerable portion of the time spent on software projects.
Such wastage of time delays the completion of projects in the specified time.

d. The user generally has only a vague idea about the scope and requirements of the software
system. This usually results in the development of software, which does not meet the user’s
requirements.

2. Discuss the process involved in waterfall and incremental developmental model with advantages and
disadvantages.

Waterfall Model:

✧ There are separate identified phases in the waterfall model:

▪ Requirements analysis and definition

▪ System and software design

▪ Implementation and unit testing

▪ Integration and system testing



▪ Operation and maintenance

✧ The main drawback of the waterfall model is the difficulty of accommodating change after the
process is underway. In principle, a phase has to be complete before moving onto the next phase.

Problems:

✧ Inflexible partitioning of the project into distinct stages makes it difficult to respond to changing
customer requirements.

▪ Therefore, this model is only appropriate when the requirements are well-understood and
changes will be fairly limited during the design process.

▪ Few business systems have stable requirements.

✧ The waterfall model is mostly used for large systems engineering projects where a system is
developed at several sites.

In those circumstances, the plan-driven nature of the waterfall model helps coordinate the work.

Incremental Development Model:

✧ The cost of accommodating changing customer requirements is reduced.

▪ The amount of analysis and documentation that has to be redone is much less than is
required with the waterfall model.

✧ It is easier to get customer feedback on the development work that has been done.

▪ Customers can comment on demonstrations of the software and see how much has
been implemented.

✧ More rapid delivery and deployment of useful software to the customer is possible.

▪ Customers are able to use and gain value from the software earlier than is possible with a
waterfall process.

Problems:

✧ The process is not visible.

▪ Managers need regular deliverables to measure progress. If systems are developed quickly, it
is not cost-effective to produce documents that reflect every version of the system.

✧ System structure tends to degrade as new increments are added.

▪ Unless time and money is spent on refactoring to improve the software, regular change tends
to corrupt its structure. Incorporating further software changes becomes increasingly difficult
and costly.





e. Changes are usually incorporated in documents without following any standard procedure.
Thus, verification of all such changes often becomes difficult.

f. The development ofl1igh-quality and reliable software requires the software to be
thoroughly tested. Though thorough testing of software consumes the majority of
resources, underestimating it because of any reasons deteriorates the software quality.

3. a. Explain the phases of RUP with a neat diagram.

The Rational Unified Process:

✧ A modern generic process derived from the work on the UML and associated process.

✧ Brings together aspects of the 3 generic process models discussed previously.

✧ Normally described from 3 perspectives

▪ A dynamic perspective that shows phases over time;

▪ A static perspective that shows process activities;

▪ A practive perspective that suggests good practice.

3.b. Explain ACM/IEEE code of ethics.



4. Explain Prototyping model of software development with a neat diagram. Discuss the different
types of Prototype models.

Prototyping is defined as the process of developing a working replication of a product or system that
has to be engineered. It offers a small-scale facsimile of the end product and is used for obtaining
customer feedback



Steps of Prototype Model

 Step 1: Requirement Gathering and Analysis:This is the initial step in designing a prototype
model. In this phase, users are asked about what they expect or what they want from the
system. Step 2: Quick Design:This is the second step in Prototyping Model. This model
covers the basic design of the requirement through which a quick overview can be easily
described.

 Step 3: Build a Prototype:This step helps in building an actual prototype from the knowledge
gained from prototype design.

 Step 4: Initial User Evaluation:This step describes the preliminary testing where the
investigation of the performance model occurs, as the customer will tell the strength and
weaknesses of the design, which was sent to the developer.

 Step 5: Refining Prototype:If any feedback is given by the user, then improving the client’s
response to feedback and suggestions, the final system is approved.
 Step 6: Implement Product and Maintain:This is the final step in the phase of the Prototyping
Model where the final system is tested and distributed to production, here program is run
regularly to prevent failures.

 Types of prototyping models
 1.RapidThrowawayPrototyping
 This technique offers a useful method of exploring ideas and getting customer feedback for each of them. In
this method, a developed prototype need not necessarily be a part of the ultimately accepted prototype.
Customer feedback helps in preventing unnecessary design faults and hence, the final prototype developed is
of better quality.

 
 2.EvolutionaryPrototyping

 In this method, the prototype developed initially is incrementally refined on the basis of customer feedback
till it finally gets accepted. In comparison to Rapid Throwaway Prototyping, it offers a better approach that
saves time as well as effort. This is because developing a prototype from scratch for every iteration of the
process can sometimes be very frustrating for the developers.



 
 3.IncrementalPrototyping

 In this type of incremental Prototyping, the final expected product is broken into different small pieces of
prototypes and developed individually. In the end, when all individual pieces are properly developed, then
the different prototypes are collectively merged into a single final product in their predefined order.
 The time interval between the project’s beginning and final delivery is substantially reduced because all
parts of the system are prototyped and tested simultaneously.

 
 4. Extreme Prototyping

 This method is mainly used for web development. It consists of three sequential independent phases:
 In this phase, a basic prototype with all the existing static pages is presented in HTML format.
 In the 2nd phase, Functional screens are made with a simulated data process using a prototype services
layer.
 This is the final step where all the services are implemented and associated with the final prototype.
 This Extreme Prototyping method makes the project cycling and delivery robust and fast and keeps the
entire developer team focused and centralized on product deliveries rather than discovering all possible
needs and specifications and adding unnecessitated features.

5. Differentiate between Agile and Plan-driven methodologies



6. Explain in detail about extreme programming.
The most significant approach to changing software development culture was the development of
Extreme Programming (XP). The name was coined by Kent Beck (Beck 1998) because the
approach was developed by pushing recognized good practice, such as iterative development, to
“extreme” levels. For example, in XP, several new versions of a system may be developed by
different programmers, integrated, and tested in a day. In XP, requirements are expressed as
scenarios (called user stories), which are implemented directly as a series of tasks. Programmers
work in pairs and develop tests for each task before writing the code. All tests must be
successfully executed when new code is integrated into the system. There is a short time gap
between releases of the system. Extreme programming was controversial as it introduced a number
of agile practices that were quite different from the development practice of that time.



7. What are Functional and Non-Functional Requirements? Explain the different types of
Non-functional requirements.

Ans. Functional requirements
a. Statements of services the system should provide, how the system should react to

particular inputs and how the system should behave in particular situations.
b. May state what the system should not do.

Non-functional requirements
c. Constraints on the services or functions offered by the system such as timing

constraints, constraints on the development process, standards, etc.
d. Often apply to the system as a whole rather than individual features or services.



8. Explain the format and characteristics of good SRS.
Following are the characteristics of a good SRS document:

a. Correctness:

User review is used to ensure the correctness of requirements stated in the SRS. SRS is
said to be correct if it covers all the requirements that are actually expected from the
system.

b. Completeness:
Completeness of SRS indicates every sense of completion including the numbering of all
the pages, resolving the to be determined parts to as much extent as possible as well as
covering all the functional and non-functional requirements properly.

c. Consistency:
Requirements in SRS are said to be consistent if there are no conflicts between any set
of requirements. Examples of conflict include differences in terminologies used at
separate places, logical conflicts like time period of report generation, etc.

d. Unambiguousness:
A SRS is said to be unambiguous if all the requirements stated have only 1 interpretation.
Some of the ways to prevent unambiguousness include the use of modelling techniques like
ER diagrams, proper reviews and buddy checks, etc.
e. Ranking for importance and stability:
There should a criterion to classify the requirements as less or more important or more
specifically as desirable or essential. An identifier mark can be used with every requirement to
indicate its rank or stability.
f. Modifiability:
SRS should be made as modifiable as possible and should be capable of easily accepting
changes to the system to some extent. Modifications should be properly indexed and
cross-referenced.
g. Verifiability:
A SRS is verifiable if there exists a specific technique to quantifiably measure the extent to
which every requirement is met by the system. For example, a requirement stating that the
system must be user-friendly is not verifiable and listing such requirements should be
avoided.
h. Traceability:
One should be able to trace a requirement to design component and then to code segment in the
program. Similarly, one should be able to trace a requirement to the corresponding test cases.
i. Design Independence:
There should be an option to choose from multiple design alternatives for the final system. More
specifically, the SRS should not include any implementation details.
j. Testability:
A SRS should be written in such a way that it is easy to generate test cases and test plans from
the document.
k. Understandable by the customer:
An end user maybe an expert in his/her specific domain but might not be an expert in
computer science. Hence, the use of formal notations and symbols should be avoided to as
much extent as possible. The language should be kept easy and clear.
l. Right level of abstraction:
If the SRS is written for the requirements phase, the details should be explained explicitly.
Whereas, for a feasibility study, fewer details can be used. Hence, the level of abstraction
varies according to the purpose of the SRS.

Structure of SRS:
Introduction :
(i) Purpose of this Document –



At first, main aim of why this document is necessary and what’s purpose of document is explained and
described.
(ii) Scope of this document –
In this, overall working and main objective of document and what value it will provide to customer is
described and explained. It also includes a description of development cost and time required.
(iii) Overview –
In this, description of product is explained. It’s simply summary or overall review of product.

General description :
In this, general functions of product which includes objective of user, a user characteristic, features, benefits,
about why its importance is mentioned. It also describes features of user community.

Functional Requirements :
In this, possible outcome of software system which includes effects due to operation of program is fully
explained. All functional requirements which may include calculations, data processing, etc. are placed in a
ranked order.

Interface Requirements :
In this, software interfaces which mean how software program communicates with each other or users either
in form of any language, code, or message are fully described and explained.
Examples can be shared memory, data streams, etc.

Performance Requirements :
In this, how a software system performs desired functions under specific condition is explained. It also
explains required time, required memory, maximum error rate, etc.

Design Constraints :
In this, constraints which simply means limitation or restriction are specified and explained for design team.
Examples may include use of a particular algorithm, hardware and software limitations, etc.

Non-Functional Attributes :
In this, non-functional attributes are explained that are required by software system for better performance.
An example may include Security, Portability, Reliability, Reusability, Application compatibility, Data
integrity, Scalability capacity, etc.

Preliminary Schedule and Budget :
In this, initial version and budget of project plan are explained which include overall time duration required
and overall cost required for development of project.

Appendices :
In this, additional information like references from where information is gathered, definitions of some
specific terms, acronyms, abbreviations, etc. are given and explained.



9. Define Requirements Engineering. Explain the activities of requirement engineering process.
Requirement Engineering is the process of defining, documenting and maintaining the requirements.

The requirements engineering process is an iterative process that involves several steps, including:
• Requirements Elicitation: This is the process of gathering information about the needs and

expectations of stakeholders for the software system. This step involves interviews, surveys, focus
groups, and other techniques to gather information from stakeholders.

• Requirements Analysis: This step involves analyzing the information gathered in the requirements
elicitation step to identify the high-level goals and objectives of the software system. It also involves
identifying any constraints or limitations that may affect the development of the software system.

• Requirements Specification: This step involves documenting the requirements identified in the
analysis step in a clear, consistent, and unambiguous manner. This step also involves prioritizing and
grouping the requirements into manageable chunks.

• Requirements Validation: This step involves checking that the requirements are complete, consistent,
and accurate. It also involves checking that the requirements are testable and that they meet the needs
and expectations of stakeholders.

• Requirements Management: This step involves managing the requirements throughout the software
development life cycle, including tracking and controlling changes, and ensuring that the requirements
are still valid and relevant.

10. Explain the different Techniques for Requirement validation?
Requirements reviews

11. Systematic manual analysis of the requirements. This technique involves reviewing the requirements
document with a group of experts, looking for errors, inconsistencies, and missing information.

12. Regular reviews should be held while the requirements definition is being formulated.
13. Both client and contractor staff should be involved in reviews.
14. Reviews may be formal (with completed documents) or informal
Prototyping

Using an executable model of the system to check requirements. This technique involves creating
a working prototype of the system and testing it to see if it meets the requirements.

Test-case generation
a. Developing tests for requirements to check testability. If the test is difficult or impossible to

design, this usually means that the requirements will be difficult to implement and should be
reconsidered.


