
Page 1 of 13

Sub: Programming Using C#

Date:

20/05/23

Duration: 90 min’s Max Marks: 50 Sem: IV

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I

1 Briefly discuss the role of Common Language Runtime (CLR) in .NET Framework with a neat

diagram.

Ans : .NET Framework provides runtime environment called Common Language Runtime (CLR). CLR

is run time environment in which programs written in C# and other .NET language are executed. The

code which runs under the CLR is called as Managed Code. CLR also supports services that the

application uses to access various resources such as collections, arrays and operating system folders.

Programmers need not to worry on managing the memory if the programs are running under the CLR as

it provides memory management and thread management. It also supports cross-language

interoperability. The runtime automatically releases the objects when they are no longer in use.

Programmatically, when our program needs memory, CLR allocates the memory for scope and de-

allocates the memory if the scope is completed. Language Compilers (e.g. C#, VB.Net, J#) will convert

the Code/Program to Microsoft Intermediate Language (MSIL) intern this will be converted to Native

Code by CLR. CLR provides different functionality for the applications.

 CLR Compiles application into the runtime, compile the IL code into native code, execute the
code

 Run-time environment

 Memory management

 Run-time services

 Allocation of Memory

 De-Allocation of Memory (garbage Enforces Security

 Type safety collation)

 Code Security based on Trust (granted permission to execute code.

 Code Debugging support

 Thread support

 Exception Management.

Page 2 of 13

 Managed code:- This code is directly executed by the CLR. The applications that are created using

managed code automatically have CLR services such as type checking, security and automatic garbage

collection. The CLR compiles the applications to intermediate language (IL) which is CPU independent.

The IL along with the metadata that describes the attributes, classes and methods of the code reside in an
assembly.

2

What is .NET Framework? Explain the benefits of .Net framework.

.NET Framework .NET Framework is the original implementation of .NET. It supports running apps,

desktop applications, websites etc on Windows. It was designed and maintained by Microsoft. Using

.NET Framework we can write/build the following types of applications: Console applications Windows

applications Web applications Web services Basics of .NET Programs developed with .NET needs a

execution engine that handles running applications. It is called Common Language Runtime (CLR). It

provides services like thread management, garbage collection, exception handling etc. .NET allows using

types defined by one .NET language to be used by another under the Common Language Infrastructure

(CLI) specification . Any language that conforms to the CLI specification of .NET can run in the .NET

run-time. Following are the few .NET languages.

• C#

• C++ (CLI version)

• J# (CLI version of Java)

• A# (CLI version of ADA)

• L# (CLI version of LISP)

• IronRuby (CLI version of RUBY)

Benefits of .NET Framework Consistent Programming Model

:- Provides a consistent object oriented programming model across different languages to create programs

for performing different tasks such as connecting to and retrieving data from databases , and reading and

writing into files.

Cross- Platform support:- Specifies that any windows platform that supports CLR can execute .NET

application that is a .NET application enables interoperability between multiple windows operating

systems.

Language Interoperability:- Enables code written in different languages to interact with each other. This

allows reusability of code and improves the efficiency of development process.

Automatic Management of Resources :- While developing application we need not manually free up the

application resources such as files, memory, network and database connections. The framework provides

3 a feature called CLR that automatically tracks the resource usage and helps you in performing the task

of manual resource management.

Ease of development:- The framework installs applications or components that do not affect the existing
applications. In most cases, to install an application we need to copy the application along with its

components on the target computer. In .NET applications are deployed in the form of assemblies.

Registry entries are not required to store information about components and applications. In addition

assemblies store information about different versions of a single component used by an application. This

resolves the version problem .

3
PART II

Explain ASP.Net and ADO.Net

ASP.NET is a web development mode, which is used to deliver interactive and data-driven web

application over the internet. It also consists of a large number of controls, such as text boxes, buttons,

Page 3 of 13

 and labels for assembling, configuring, and manipulating code to create Hyper Text Markup Language

(HTML). Better Performance: Specifies that when you request a web page for the first time after

compiling

 Advantages of ASP.NET:

Better Performance : ASP.NET code, the CLR compiles the code and stores the cached copy of the result.

Now, for any subsequent calls to the same page, the cached copy of the result is retrieved instead of going

back to the server.

Improved Security: Refers to the different methods of authentication included in ASP.NET:server.

Forms: Allowsthe ASP.NET application to use its own custom businesslogic for authentication.

Windows: Checks the identity of a user against the Windows user accounts that are stored on the Web
Server. If the credentials of a user match with that of a Windows user account, thenthe user is

authenticated

Greater Scalability: Specifies that the session states in ASP.NET are maintained in a separate process on

a different machine or database. This enables cross-server sessions to occur, solving the problem of web

Cookie-less Sessions: Specifies that ASP.NET stores the session even when the cookies in a Web

browserforms when more web servers need to be added as the traffic grows. are disabled. In such a

case, the session ID is passed as a part of the Uniforms Resource Locator (URL

ADO .NET: ADO.NET is a technology used for working with data and databases of all types. It

provides access to data sources, such as Microsoft SQL Server, data sources exposed through OLE DB,

and Extensible Markup Language (XML).

Disconnected Data Architecture: Implies that applications connect to the database only when data

needs to be retrieved or modified. After the database operation has been performed, the connection to the

database is closed. To perform any database operation again, the connection with the database will have

to be re-established.

Cached Data in Datasets: Follows a disconnected architecture for accessing or modifying data. The data

is accessed and later stored in the datasets. A dataset is a cached set of database records, which is

independent of data source. Even when you are disconnected from the database on which you are

working, you can make modifications in the database.

Scalability: Reduces the traffic on the database and saves the resources to make the database more

efficient. ADO.NET help in attaining scalability by performing all database operations on the dataset

instead of on the database.

Transfer of Data in XML Format: Transfers data from a database into a dataset and from the dataset to
another components using XML, which is the standard format used for transferring data in ADO.NET

Interaction with the Database through Data Commands: All operations on database are performed,

such as retrieving, modifying, or updating of data using data commands. A data command is either a

Structured Query Language (SQL) statement or a stored procedure

4

Make a short note on LINQ with examples.

The acronym LINQ is for Language Integrated Query. Microsoft’s query language is fully

Page 4 of 13

 integrated and offers easy data access from in-memory objects, databases, XML documents and many

more. It is through a set of extensions, LINQ ably integrate queries in C# and Visual Basic. Developers

across the world have always encountered problems in querying data because of the lack of a defined

path and need to master a multiple of technologies like SQL, Web Services, XQuery, etc. Introduced in

Visual Studio 2008 and designed by Anders Hejlsberg, LINQ (Language Integrated Query) allows

writing queries even without the knowledge of query languages like SQL, XML etc. LINQ queries can be

written for diverse data types.

Types of LINQ

LINQ to Entities

 LINQ to SQL (DLINQ)

 LINQ to DataSet 

LINQ to XML(XLINQ)

 LINQ to Objects

 The types of LINQ are mentioned below in brief. Apart from the above, there is also a LINQ type

named PLINQ which is Microsoft’s parallel LINQ. LINQ Architecture in .NET LINQ has a 3-layered

architecture in which the uppermost layer consists of the language extensions and the bottom layer

consists of data sources that are typically objects implementing IEnumerable or IQueryable generic

interfaces. The architecture is shown below in Figure

Page 5 of 13

LINQ offers a host of advantages and among them the foremost is its powerful expressiveness which
enables developers Viewing relationship between two tables is easy with LINQ due to its hierarchical

feature and this enables

 LINQ makes easy debugging due to its integration in the C# language.

 Writing codes is quite faster in LINQ and thus development time also gets reduced significantly.

 LINQ offers IntelliSense which means writing more accurate queries easily.

 LINQ offers syntax highlighting that proves helpful to find out mistakes during design time.

to express declaratively.

 LINQ allows usage of a single LINQ syntax while querying many diverse data sources and this is

mainly because composing queries joining multiple tables in less time.

 LINQ offers the facility of joining several data sources in a single query as well as breaking

complex problems

 LINQ is extensible that means it is possible to use knowledge of LINQ to querying new data
source types. of its unitive foundation.

 LINQ offers easy transformation for conversion of one data type to another like transforming SQL

data to XMLinto a set of short queries easy to debug. data

Page 6 of 13

5

PART III

Describe with example :

 Array of objects

Array of objects in C# is just an array of object data as its value. By using array of objects, you can

access the members (field and methods) of the class with each object.

Syntax:

class_name array_name[] = new class_name[SIZE];

Example:

using System;

namespace ExampleArrayOfObjects {

 // Class definition

 class Student {

 //private data members

 private int rollno;

 private string name;

 private int age;

 //method to set student details

 public void SetInfo(string name, int rollno, int age) {

 this.rollno = rollno;

 this.age = age;

 this.name = name;

 }

 //method to print student details

 public void printInfo() {

 Console.WriteLine("Student Record: ");

 Console.WriteLine("\tName : " + name);

 Console.WriteLine("\tRollNo : " + rollno);

 Console.WriteLine("\tAge : " + age);

 }

 }

 class Program {

 static void Main() {

 //creating array of objects

 Student[] S = new Student[2];

 //Initialising objects by defaults/inbuilt

 //constructors

 S[0] = new Student();

 S[1] = new Student();

 //Setting the values and printing first object

 S[0].SetInfo("Herry", 101, 25);

 S[0].printInfo();

 //Setting the values and printing second object

 S[1].SetInfo("Potter", 102, 27);

 S[1].printInfo();

 }

 }

}

 Partial class
A partial class is a special feature of C#. It provides a special ability to implement the functionality of a
single class into multiple files and all these files are combined into a single class file when the application
is compiled. A partial class is created by using a partial keyword. This keyword is also useful to split the
functionality of methods, interfaces, or structure into multiple files.

Page 7 of 13

Syntax:

public partial Clas_name

{

 // code

}

public partial class Geeks {

 private string Author_name;

 private int Total_articles;

 public Geeks(string a, int t)

 {

 this.Authour_name = a;

 this.Total_articles = t;

 }

}

public partial class Geeks {
 public void Display()
 {
 Console.WriteLine("Author's name is : " + Author_name);
 Console.WriteLine("Total number articles is : " + Total_articles);
 }
}
public class Geeks {
 private string Author_name;
 private int Total_articles;

 public Geeks(string a, int t)
 {
 this.Authour_name = a;
 this.Total_articles = t;
 }

 public void Display()
 {
 Console.WriteLine("Author's name is : " + Author_name);
 Console.WriteLine("Total number articles is : " + Total_articles);
 }
}

Page 8 of 13

6

Explain different types of Operators in C #.

An operator is simply a symbol that is used to perform operations. There can be many types of

operations like arithmetic, logical, bitwise etc.

There are following types of operators to perform different types of operations in C# language.

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Unary Operators

 Ternary Operators

 Misc Operators

Page 9 of 13

7

PART IV

With the help of a C # program explain nested classes in C #.

A nested class is a class which is declared in another enclosing class. A nested class is a member
and as such has the same access rights as any other member. The members of an enclosing class
have no special access to members of a nested class; the usual access rules shall be obeyed.

#include<iostream>

using namespace std;

/* start of Enclosing class declaration */

class Enclosing {

private:

 int x;

/* start of Nested class declaration */

class Nested {

 int y;

 void NestedFun(Enclosing *e) {

 cout<<e->x; // works fine: nested class can access

 // private members of Enclosing class

 }

}; // declaration Nested class ends here

}; // declaration Enclosing class ends here

int main()

{

}

#include<iostream>

using namespace std;

Page 10 of 13

/* start of Enclosing class declaration */

class Enclosing {

int x;

/* start of Nested class declaration */

class Nested {

 int y;

}; // declaration Nested class ends here

void EnclosingFun(Nested *n) {

 cout<<n->y; // Compiler Error: y is private in Nested

}

}; // declaration Enclosing class ends here

int main()

{

}

Page 11 of 13

8

Explain :

i. Boxing and Unboxing

Boxing is the process of converting a value type to the object type or any interface type implemented by

this value type. Boxing is implicit.

Example: Boxing

Copy

int i = 10;

object o = i; //performs boxing

In the above example, the integer variable i is assigned to object o. Since object type is a reference type

and base class of all the classes in C#, an int can be assigned to an object type. This process of

converting int to object is called boxing.

Let's look at a more practical example.

Example: Boxing

Page 12 of 13

 Copy

ArrayList list = new ArrayList();

list.Add(10); // boxing

list.Add("Bill");

Above, ArrayList is a class in C#, and so it is a reference type. We add an int value 10 in it. So, .NET

will perform the boxing process here to assign value type to reference type.

As you know, all the reference types stored on heap where it contains the address of the value and value

type is just an actual value stored on the stack. Now, as shown in the first example, int i is assigned to

object o. Object o must be an address and not a value itself. So, the CLR boxes the value type by

creating a new System.Object on the heap and wraps the value of i in it and then assigns an address of

that object to o. So, because the CLR creates a box on the heap that stores the value, the whole process

is called 'Boxing'.

The following figure illustrates the boxing process.

Unboxing is the reverse of boxing. It is the process of converting a reference type to value type.
Unboxing extract the value from the reference type and assign it to a value type.

Unboxing is explicit. It means we have to cast explicitly.

Example: Unboxing

Copy

object o = 10;

int i = (int)o; //performs unboxing

The following figure illustrates the unboxing process.

A boxing conversion makes a copy of the value. So, changing the value of one variable will not impact

others.

Page 13 of 13

 int i = 10;

object o = i; // boxing

o = 20;

Console.WriteLine(i); // output: 10

The casting of a boxed value is not permitted. The following will throw an exception.

Example: Invalid Conversion

Copy

int i = 10;

object o = i; // boxing

double d = (double)o; // runtime exception

First do unboxing and then do casting, as shown below.

Example: Valid Conversion

Copy

int i = 10;

object o = i; // boxing

double d = (double)(int)o; // valid

ii. Identifiers and keywords

An Identifiers is a sequence of character used to identify a variable, constant, or any user-defined

programming element. Rules: Starts with a letter or an underscore and ends with a character. Can have

letters, digits and underscores Must not be a reserved word Must be a complete word without any blank

spaces. Example: sum, SUM, _sum Keywords are the reserved words whose meanings are predefined to

the C# compiler. Rules: You cannot use keywords as variable, methods and properties If you want to

use the keywords asidentifiers, prefix the keyword with @ character.

iii. Foreach

 It is necessary to enclose the statements of foreach loop in curly braces {}.

 Instead of declaring and initializing a loop counter variable, you declare a variable that is the

same type as the base type of the array, followed by a colon, which is then followed by the array

name.
 In the loop body, you can use the loop variable you created rather than using an indexed array

Page 14 of 13

 element.

using System;

class GFG {

// Main Method

static public void Main()

{

Console.WriteLine("Print array:");

// creating an array

int[] a_array = new int[] { 1, 2, 3, 4, 5, 6, 7 };

// foreach loop begin

// it will run till the

// last element of the array
foreach(int items in a_array)

{

Console.WriteLine(items);

}

}

}

9

PARTV

Explain different data types in C #.

Value types: Value types directly contain their data, and instances of value types are either allocated on

the stack or allocated inline in a structure. Value types can be built-in (implemented by the runtime),

user-defined, or enumerations.

Reference types Reference types store a reference to the value's memory address, and are allocated on

the heap. Reference types can be self-describing types, pointer types, or interface types. The type of a

reference type can be determined from values of self-describing types. Self-describing types are further
split into arrays and class types. The class types are user-defined classes, boxed value types, and

Page 15 of 13

 delegates.

10 What are namespaces? List and explain the purpose of any five namespaces

Within System we can find numerous useful types dealing with built in data, mathematical

computations, random number generation, environment variables, and garbage collection, as well as a

number of commonly used exceptions and attributes. So System is a root namespace. The following are

some of the common namespaces provided by the .NET Framework class library

