CMR

INSTITUTE OF
TECHNOLOGY USN
Internal Assessment Test |1 — August 2023
Sub: | Database Management System CSoliii' 22MCA21
Date: 28-08-2023 puration: | 0 | M55 sem: | 11| Branch: | MCA
min’s | Marks:
Note : Answer FIVE FULL Questions, choosing ONE full guestion from each Module
OBE
PART I MARKS
CcO RBT
1 |What are triggers in SQL? Explain about Triggers in SQL with Suitable example.
OR [10] Co2| L3
2 |What are triggers in SQL? Explain about Triggers in SQL with Suitable example. [10] cosl L2
PART Il [10]
3 |What are the different types of JOINs? Provide examples for each by explaining coz| L3
the scenarios where each type of join is commonly used.
OR
4 What are Inference Rules? Explain any 6 IR rules with examples. [10] cosl L2
PART 111
5 |Define Normalization. Explain INF, 2NF and 3NF with examples.
[101 |coa| L3
OR
6 |What are Views in SQL? Discuss on methodologies to implement views in SQL.
Explain with an example. 101 CO4 | L2
PART IV Coz| L2
7 |How assertions are used to enforce complex constraint? Explain with example. [10]
OR
Given the functional dependencies X= {A -> B, AB->C, D->AC, D->E} and CO3| L3
8 |Y= {A -> BC, D -> AE}, Explain whether these two sets of functional [10]
dependencies are equivalent.
PART V
9 |In the context of Embedded SQL, what is a cursor? How is it used, and what
. [10] |CO3| L2
problem does it help to solve?
OR
10 |Let the given set of Functional Dependencies be X: {B->A, A->D, AB->D}. Find [10] |CO3| L3
the minimal cover of X.

Solution

1. What are triggers in SQL? Explain about Triggers in SQL with Suitable example.

Another important statement in SQL is CREATE TRIGGER. In many cases it is convenient to
specify the type of action to be taken when certain events occur and when certain conditions are
satisfied. For example, it may be useful to specify a condition that, if violated, causes some user to
be informed of the violation. The CREATE TRIGGER statement is used to implement such actions
in SQL. A typical trigger has three components:

Event: When this event happens, the trigger is activated.

Condition (optional): If the condition is true, the trigger executes, otherwise skipped

Action: The action performed by the trigger

The action is to be executed automatically if the condition is satisfied when event occurs.—
Trigger: Events Three event types Insertl] Update[] Delete’] Two triggering times Before the
eventl] After the event(] Two granularities Execute for each rowl(] Execute for each statement
Syntax:

create trigger [trigger_name]
[before | after]

{insert | update | delete}

on [table_name]

[for each row]
[trigger_body]

Trigger name

Create Trigger <name>

Before|After Insert|Update|Delete ON <tablename> That is the event

e Example

Create Trigger ABC
Before Insert On Students

This trigger is activated when an
insert statement is issued, but
before the new record is inserted

Create Trigger XYZ
After Update On Students

This trigger is activated when an
update statement is issued and
after the update is executed

CREATE TRIGGER incr_count AFTER INSERT ON Students = Event */

WHEN (new.age<18) * Condition */

FOR EACH ROW

BEGIN = Action */
count ;= count + 1;

END

For example, given Library Book Management database schema with Student database schema. In these databases, if any

student borrows a book from library then the count of that specified book should be decremented. To do so,

Suppose the schema with some data,

mysgl> select * from book_det;

+----- - - +-------- +
| bid | btitle | copies |
+----- e e +
1	Java	10
2	c++	5
3	mysql	10
4	oracle DBMS	5
+----- - - +-------- +

4 rows in set (2.00 sec)

mysql> select * from book_issue;

1 row in set (8.00 sec)

To implement such procedure, in which if the system inserts the data into the book_issue database a trigger should

automatically invoke and decrements the copies attribute by 1 so that a proper track of book can be maintained.

create trigger book_copies_deducts
after INSERT
on book_issue
for each row

update book det set copies = copies - 1 where bid = new.bid;

Above trigger, will be activated whenever an insertion operation performed in a book_issue database, it will update the

book_det schema setting copies decrements by 1 of current book id(bid).

v N

Explain the informal design guidelines for relation schema
Making sure that the semantics of the attributes is clear in the schema

Reducing the redundant information in tuples
Reducing the NULL values in tuples

Disallowing the possibility of generating spurious tuples

1. Semantics of the Attributes

Whenever we are going to form relational schema there should be some meaning
among the attributes. This meaning is called semantics. This semantics relates one
attribute to another with some relation.

Eg:

USN No

| | Student name | Sem

2. Reducing the Redundant Value in Tuples
Mixing attributes of multiple entities may cause problems
Information is stored redundantly wasting storage
Problems with update anomalies
Insertion anomalies
Deletion anomalies

Modification anomalies

e - | Student name | Sem

Eg:

| Dept No | Dept Name |

If we integrate these two and is used as a single table i.e Student Table

| USN No | Student name | Sem | Dept No | DeptName |

Here whenever if we insert the tuples there may be ‘N’ stunents in one department,so
Dept No,Dept Name values are repeated ‘N’ times which leads to data redundancy.

Another problem is updata anamolies ie if we insert new dept that has no students.

If we delet the last student of a dept.then whole information about that department will be
deleted

If we change the value of one of the attributes of aparticaular table the we must update
the tuples of all the students belonging to thet depy else Database will become
inconsistent.

Note: Design in such a way that no insertion .deletion,modification anamolies will occur

3. Reducing Null values in Tuples.

Note: Relations should be designed such that their tuples will have as few NULL
values as possible

Attributes that are NULL frequently could be placed in separate relations (with the
primary key)

Reasons for nulls:
attribute not applicable or invalid

attribute value unknown (may exist)

value known to exist, but unavailable
4. Disallowing spurious Tuples

Bad designs for a relational database may result in erroneous results for certain JOIN
operations

The "lossless join" property is used to guarantee meaningful results for join
operations

Note: The relations should be designed to satisfy the lossless join condition. No
spurious tuples should be generated by doing a natural-join of any relations.

3. What are the different types of JOINs? Provide examples for each by explaining the scenarios
where each type of join is commonly used.

A J0IN clause is used to combine rows from two or more tables, based on a related
column between them.

Different Types of SQL JOINs

Here are the different types of the JOINs in SQL:

s (INMER) JOIN : Returns records that have matching values in both tables

s LEFT (OUTER) JOIN: Returns all records from the left table, and the matched records from the right table
¢ RIGHT {OUTER) JOIN: Returns all records from the right table, and the matched recerds from the left table
s FULL (OUTER) JOIN: Returns all records when there is a match in either left or right table

INNER JOIN LEFT JOIN RIGHT JOIN FULL OUTER JOIN

4. What are Inference Rules? Explain any 6 IR rules with examples.
Inference Rule (IR):

o The Armstrong's axioms are the basic inference rule.

o Armstrong's axioms are used to conclude functional dependencies on a relational database.

=]

The inference rule is a type of assertion. It can apply to a set of FD(functional dependency) to derive other FD.

=]

Using the inference rule, we can derive additional functional dependency from the initial set.

The Functional dependency has 6 types of inference rule:

1. Reflexive Rule (IR4)

In the reflexive rule, if Y is a subset of X, then X determines Y.
fX2YthenX — Y
Example:

X=1{a b, cd e}
Y ={a b, c}

2. Augmentation Rule (IR5)

The augmentation is also called as a partial dependency. In augmentation, if X determines Y, then XZ determines YZ for any Z.
fX — YthenXZ — YZ

Example:
For R(ABCD), if A — BthenAC — BC

3. Transitive Rule (IR3)

In the transitive rule, if X determines ¥ and Y determine Z, then X must also determine Z.
fX — YandY — ZthenX — Z

4. Union Rule (IRy)

Union rule says, if X determines Y and X determines Z then X must alsc determine ¥ and Z.

IfX — YandX — ZthenX - YZ

Proof:
1. X =Y (given)

2. X — Z (given)
3. X = XY (using IR; on 1 by augmentation with X. Where XX = X)

4. XY — YZ (using IR; on 2 by augmentation with)
5. X — ¥Z (using IR; on 3 and 4)

5. Decomposition Rule (IR5)

Decompasition rule is also known as project rule. It is the reverse of union rule.

This Rule says, if X determines Y and Z, then X determines Y and X determines Z separately.
X — YZthenX — YandX - Z

Proof:
1. X = YZ (given)

2.¥Z — ¥ (using IR Rule)
3.X =Y (using IR; on 1 and 2)

6. Pseudo transitive Rule (IRg)

In Pseudo transitive Rule, if X determines ¥ and YZ determines W, then XZ determines W.
IfX — Yand¥Z — WthenXZ — W

Proof:

1. X =Y (given)

2. WY — Z (given)

3. WX — WY (using IR; on 1 by augmenting with W)
4. WX — Z (using IR; on 3 and 2)

5. Define Normalization. Explain INF, 2NF and 3NF with examples.

= Normalization:

= [he process of decomposing unsatisfactory "bad"
relations by breaking up their attributes into
smaller relations

= Normal form:

= Condition using keys and FDs of a relation to
certify whether a relation schema is in a particular
normal form

= Normalization is carried out in practice so that the
resulting designs are of high quality and meet the
desirable properties

= The practical utility of these normal forms becomes
questionable when the constraints on which they are
based are hard to understand or to detect

= [he database designers need not normalize to the
highest possible normal form

= (usually up to 3NF, BCNF or 4NF)

= Denormalization:
= The process of storing the join of higher normal form
relations as a base relation—which is in a lower normal
form

First Normal Form

s Disallows
= composite attributes
= Mmultivalued attributes

= hested relations; attributes whose values for an
individual tuple are non-atomic

» Considered to be part of the definition of relation

(a)
DEPARTMENT
| Drame | Dnumber | Dmgrssn | Diocations |

! I SO

(b}

DEPARTMENT
Dname Dnumber Dmgr_s=n Diocations
Research 5 333445555 | {Bellaire, Sugarland, Houston}
Admaristration 4 987654321 | [Stafford])
Headquarters i 888865555 | {Houston)
(c)
DEPARTMENT
Research 333445555 | Bellaire
Research 333445555 | Sugarland

333445555 | Houston
987654321 | Stafford
BBBEBE55S | Houston

Research

Admaristration

Dname Dnumber Dmgr_ssn Dlocation
5
5
5
4
1

Headquarters

Second Normal Form

Uses the concepts of FDs, primary key

Definitions

= Prime attribute: An attribute that is member of the primary
key K

= Full functional dependency: a FD Y -> Z where removal
of any attribute from Y means the FD does not hold any
more

Examples:

= {SSN, PNUMBER}-> HOURS is a full FD since neither SSN
-> HOURS nor PNUMBER -> HOURS hold

= {SSN, PNUMBER}-> ENAME is not a full FD (it is called a
partial dependency) since SSN -> ENAME also holds

A relation schema R is in second normal form
(2NF) if every non-prime attribute A in R is fully
functionally dependent on the primary key

R can be decomposed into 2NF relations via the
process of 2ZNF normalization

(a} Figure 10.10

EMP_PROU Maormalizing into JMF and 3MF.
Prumber | Hours | Ename | Pname | Plocath {a) Normalizing EMP_PROU into 2MF

[S | [Hou | I : [Pocsin |) MNosmalizing EMP_DEPT

FO1 } inte AMNF relations.

F|:|2|

FD3

2MF Mormalization \

EP EP2 EP3
FDO1 * FO2 i FD:!| i i

tehr:p_nerr
["Ename | Ssn | Bdate | Addrss | Drumber | Dname | Dmgr_ssn |
] : A L } i T

3MF Normalization

ED1
[Emlﬁm_lﬁmmlﬁmulﬂnﬂbar |w|nmlbmqr_am|
| i (] i i | i i

3.4 Third Normal Form (1)

= Definition:
= Transitive functional dependency: aFD X ->Z
that can be derived fromtwo FDs X->Y andY ->
Z
s Examples:

= SSN -> DMGRSSN is a transitive FD

= Since SSN -> DNUMBER and DNUMBER ->
DMGRSSN hold

= SSN -> ENAME is non-transitive

= Since there is no set of attributes X where SSN > X
and X -> ENAME

6. What are Views in SQL? Discuss on methodologies to implement views in SQL. Explain with

an example.

A view is a single table that is derived from one or more base tables or other views .Views neither
exist physically nor contain data itself, it depends on the base tables for its existence A view
contains rows and columns, just like a real table. The fields in a view are fields from one or more
real tables in the database.

Specification of Views in SQL

Syntax:

CREATE VIEW view_name AS SELECT column_name(s) FROM table_name WHERE condition

Example

CREATE VIEW WORKS_ON1 AS SELECT Fname, Lname, Pname, Hours FROM EMPLOYEE,
PROJECT, WORKS_ON WHERE Ssn=Essn ANDPno=Pnumber ;

Retrieve the Last name and First name of all employees who work on ‘ProductX’

SELECT Fname, Lname FROM WORKS ON1 WHERE Pname=‘ProductX’ ;

A view always shows up-to-date— If we modify the tuples in the base tables on which the view is
defined, the view must automatically— reflect these changes If we do not need a view any more,
we can use the DROP VIEW command— DROP VIEW WORKS_ON1;

View Implementation and View Update

View Implementation

The problem of efficiently implementing a view for quering is complex two main approaches have
been suggested

Modifying the view query into a query on the underlying base tables

Disadvantage: inefficient for views defined via complex queries that are time-consuming to
execute, especially if multiple queries are applied to the view within a short period of time.

Example
¢ The query example# would be automatically modified to the following query by the DBMS

SELECT Fname, Lname
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn=Essn ANDPno=Pnumber
AND Pname="ProductX’;
View Materialization
Physically create a temporary view table when the view is first queried
Keep that table on the assumption that other queries on the view will follow
Requires efficient strategy for automatically updating the view table when the base tables are updated, that
is Incremental Update
Incremental Update determines what new tuples must be inserted, deleted, or modified in a materialized
view table when a change is applied to one of the defining base table

Yiew Update
» Updating of views is complicated and can be ambiguous
» Anupdate on view defined on a single table without any aggregate functions can be mapped to an update or
the underlying base table under certain conditions.
» View involving joins, an update operation may be mapped to update operations on the underlying base
relations in multiple ways.
OBSERVATIONS ON VIEWS
O A view with a single defining table is updatable if the view attributes contain the primary key of the base
relation, as well as all attributes with the NOT NULL constraint that do not have default values specified
O Views defined on multiple tables using joins are generally not updatable
O Views defined using grouping and aggregate functions are not updatable
< In SQL, the clause WITH HECK OPTION must be added at the end of the view definition if a view is to be

updated.

V VYV

%

Advantages of Views

Data independence
Currency

Improved security
Reduced complexity
Convenience
Customization

VVVVVY

» Data integrity

7. How assertions are used to enforce complex constraint? Explain with example.
Specifying Constraints as Assertions and Actions as Triggers

CREATE ASSERTION, which can be used to specify additional types of constraints that are outside the
scope of the built-in relational model constraints (primary and unique keys, entity integrity, and referential integrity)
that we presented early.

CREATE TRIGGER,which can be used to specify automatic actions that the database system will perform
when certain events and conditions occur. This type of functionality is generally referred to as active databases.

In SQL,users can specify general constraints—those that do not fall into any of the categories described via

declarative assertions, using the CREATE ASSERTION statement of the DDL. Each assertion is given a constraint
name and is specified via a condition similar to the WHERE clause of an SQL query.

For example, to specify the constraint that the salary of an employee must not be
greater than the salary of the manager of the department that the employee works for in
SQL, we can write the following assertion:

CREATE ASSERTION SALARY_CONSTRAINT
CHECK (NOT EXISTS (SELECT *
FROM EMPLOYEE E, EMPLOYEE M,
DEPARTMENT D
WHERE E.Salary>M.Salary
AND E.Dno=D.Dnumber
AND D.Mgr_ssn=M.Ssn));

The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK,

which is followed by a condition in parentheses that must hold true on every data-

base state for the assertion to be satisfied. The constraint name can be used later to

refer to the constraint or to modify or drop it. The DBMS is responsible for ensur-

ing that the condition is not violated. Any WHERE clause condition can be used, but

many constraints can be specified using the EXISTS and NOT EXISTS style of SQL

conditions. Whenever some tuples in the database cause the condition of an

ASSERTION statement to evaluate to FALSE, the constraint is violated. The con-

straint is satisfied by a database state if no combination of tuples in that database

state violates the constraint.
The basic technique for writing such assertions is to specify a query that selects any tuples that violate the desired
condition.By including this query inside a NOT EXISTSclause, the assertion will specify that the result of this query
must be empty so that the condition will always be TRUE.Thus,the assertion 1s violated if the result of the query is
not empty.In the preceding example,the query selects all employees whose salaries are greater than the salary of the
manager of their department. If the result of the query is not empty,the assertion is violated.

8. Given the functional dependencies X= {A -> B, AB->C, D->AC, D->E} and Y={A -> BC,
D -> AE}, Explain whether these two sets of functional dependencies are equivalent.

EQUIVALENCE OF SETS OF FUNCTIONAL
DEPENDENCIES

E = {A—B, AB—C, D—AC, D—E}

F = {A—BC, D—AE}

e A set of functional dependencies E and F is

Equivalent if
E covers F and F covers E.

oE covers F means that all the Functional
dependency in F can be inferred from E, (i.e
\'/:v)hether E is covering functional dependencies of

05 cgverg E means that all the Functional
ependency in E can be inferred from F (i.e
whether F is covering functional dependencies of

2
QO

Computing F Covers E

e We can determine whether F covers E
by calculating X+ with respect to F for
each FD X—Y in E, and then checking
whether this X+ includes the attributes
inY

F={A->B, C=>E, D->B}

E={C->D, D>E}

Compute C+ & D+ wrt F

Check C+ include D & D+ include E
| F Y

|

e Given two sets F and E of FDs for a
relation.

E = {A—B, AB—C, D—AC,D—E}
F = {A—BC, D—AE}
Are the two'Sets equivalent?

Soln : if E =F then We have to check
whether E covers F and F covers E.

E Covers F
Given E = {A—B, AB—C, D—AC, D—E}
F = {A8BC, D—AE)

A—BC D—AE
A+={ABC} D+={DACEB}
A+ includes Band C |D+ includes A and E

Therefore E covers F

E Covers F
Given E = {A—B, AB—C, D—AC, D—E}
F = {ASBC, D~AE)

A—BC D—AE

A+={ABC} D+={DACEB}
A+ includes Band C |D+ includes A and E

Therefore E covers F

9.

In the context of Embedded SQL, what is a cursor? How is it used, and what problem does it
help to solve?

Cursors:

A major problem in embedding SQL statements in a host language like C is that an impedance
mismatch occurs because SQL operates on set of records, whereas languages like C do not cleanly
support a set-of-records abstraction. The solution is to essentially provide a mechanism that allows
us to retrieve rows one at a time from a relation. This mechanism is called a cursor. We can declare
a cursor on any relation or on any SQL query (because every query returns a set of rows). Once a
cursor is declared, we can open it (which positions the cursor just before the first row); fetch the
next row; move the cursor (to the next row, to the row after the next n, to the first row, or to the
previous row, etc., by specifying additional parameters for the FETCH command); or close the
cursor. Thus, a cursor essentially allows us to retrieve the rows in a table by positioning the cursor
at a particular row and reading its contents.

Basic Cursor Definition and Usage

cursors enable us to examine, in the host language program, a collection of rows computed by an
Embedded SQL statement:

We usually need to open a cursor if the embedded statement is a SELECT query. However, we can
avoid opening a cursor if the answer contains a single row.

INSERT, DELETE, and UPDATE statements typically require no cursor, although some variants of
DELETE and UPDATE use a cursor.

As an example, we can find the name and age of a sailor, specified by assigning a value to the
host vartable ¢ sid, declared earlier, as follows:

EXECSQL

SELECTS sname, 5.age

INTO ¢ sname, :c age

FROM Sailors S WHERES.s1d = ¢ sid;

The INTO clause allows us to assign the columns of the single answer row to the host variables
¢ snameand ¢ age. Therefore, we do not need a cursor to embed this query in a host language program,

But what about the following query, which computes the names and ages of all sailors with a rating
greater than the current value of the host variable ¢_minrating?
SELECT S.sname, S.age
FROM Sailors S
WHERE S.rating> :c_minrating
This query returns a collection of rows, not just one row. 'When executed
interactively, the answers are printed on the screen. If we embed this query in
a C program by prefixing the cOlnmand with EXEC SQL, how can the answers
be bound to host language variables? The INTO clause is inadequate because
we must deal with several rows. The solution is to use a cursor:

DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age

FROM Sailors S

WHERE S.rating > :c_minrating;

This code can be included in a C program, and once it is executed, the cursor
sinfo is defined. Subsequently, we can open the cursor:

OPEN sinfo:
The value of c_minrating in the SQI. query associated with the cursor is the
value of this variable when we open the cursor. (The cursor declaration is
processed at compile-time, and the OPEN command is executed at run-time.) A

cursor can be thought of as 'pointing' to a row in the collection of answers to the query associated
with it. When a cursor is opened, it is positioned just before the first row. We can use the FETCH
command to read the first row of cursor sinfo into host language variables:

FETCH sinfoINTO :c_sname, :c_age;

When the FETCH statement is executed, the cursor is positioned to point at the next row (which is
the first row in the table when FETCH is executed for the first time after opening the cursor) and
the column values in the row are copied into the corresponding host variables. By repeatedly
executing this FETCH statement (say, in a while-loop in the C program), we can read all the rows
computed by the query, one row at a time. Additional parameters to the FETCH command allow
us to position a cursor in very flexible ways. How do we know when we have looked at all the rows
associated with the cursor? By looking at the special variables SQLCODE or SQLSTATE, of course.
SQLSTATE, for example, is set to the value 02000, which denotes NO DATA, to indicate that there
are no more rows ifthe FETCH statement positions the cursor after the last row. When we are
done with a cursor, we can close it: CLOSE sinfo; It can be opened again if needed and the value of
:c_minrating in the SQL query associated with the cursor would be the value of the host variable
c_minrating at that time

10. Let the given set of Functional Dependencies be X: {B->A, A->D, AB->D}. Find the minimal
cover of X.

MINIMAL COVER

e If a Functional Dependency F is given,
then F’ is Minimal cover of this FD set
if F' does not have

Redundant Attributes
Redundant Functional Dependency

Steps

1. In Every Functional Def)endency right hand side
must contain only single attribute

Aeg(i:f A —BC can be applied decomposition rule as A—B,
—

2. (a) If Functional Dependency has multiple attributes
on LHS, Remove Extraneous/redundant attributes
eg : if FD contains F' :{AB—C, ... A—C} the B can be
removed
(b) IF there is any trivial Functional Dependency , that can
be removed
Eg : {AB - B} is trivial since RHS & LHS have attributes in
common
3. Remove redundant Functional Dependency By using
the transitive rule
‘egE :B—2AD—AB—D}
- By using the transitive ruleon B— D and D — A, we
derive B — A. wabwdummmdmbe

Example 1

eLet the given set of FDs be E :
{B—A, A—D,AB— D}. Find the
minimal cover of E.

Soln :

Step 1 : Check if RHS of Functional
Dependency contain only single attribute

Here All above dependencies have only
one attribute on the right-hand side , so
we have completed step 1.

E:{B—’A,da, AB — D}.

Step 2 : Check if LHS of Functional
Dependency has only single attributes

AB — D has two attributes on LHS.
Check whether it can be replaced by
B—D or A—D.

Thus A—D is redundant will not consider
so AB — D may be replaced by B — D.

E:B—A A—D, B—D}

e Step 3 Remove redundant Functional
Dependency By using the transitive rule

e By using the transitive ruleon B — A
and A — D, we derive B— D Hence B —
D is redundant and can be removed

Therefore, the minimal cover of E is
= {B => A: A— Du }

