
Q1]What is an interface? How is an interface different from an abstract
class in java? What are the access specifiers that can be used for
data members in an interface and why?

a) Interface:

The interface in Java is a mechanism to achieve abstraction. There can be only abstract

methods in the Java interface, not method body. It is used to achieve abstraction and

multiple inheritance in Java.

In other words, you can say that interfaces can have abstract methods and variables. It

cannot have a method body.

Java Interface also represents the IS-A relationship.

b)How interface is different from an abstract class

Abstract class Interface

1) Abstract class

can have abstract

and non-abstract

methods.

Interface can have

only abstract

methods. Since Java

8, it can have default

and static methods

also.

2) Abstract class

doesn't support

multiple

inheritance.

Interface supports

multiple inheritance.

https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/inheritance-in-java

3) Abstract class

can have final,

non-final, static

and non-static

variables.

Interface has only

static and final

variables.

4) Abstract class

can provide the

implementation of

interface.

Interface can't

provide the

implementation of

abstract class.

c) access specifiers that can be used in an interface:

As of Java7 you can have only public, abstract as modifiers for the methods of an
interface.

From Java8 onwards interfaces allow default methods and static methods.

Static methods − A static method is declared using the static keyword and it will be

loaded into the memory along with the class. You can access static methods using

class names without instantiation.You need to call the static method of an interface

using the name of the interface.

interface MyInterface{
public void demo();
public static void display() {
System.out.println("This is a static method");

}
}
public class InterfaceExample{
public void demo() {
System.out.println("This is the implementation of the demo method");

}
public static void main(String args[]) {
InterfaceExample obj = new InterfaceExample();
obj.demo();
MyInterface.display();

}

}

Output

This is the implementation of the demo method

This is a static method

Q2]Write a Java program to create an interface Searchable with a
method search() that searches an element in an array of integers.
Create two classes LinearSearch
and BinarySearch that implement the Searchable interface and provide
their own implementations of the search() method

interface Searchable{

public int search (int[] ar, int k);
}

class LinearSearch implements Searchable{
public int search(int[] ar, int k){
for(int i=0;i<ar.length;i++){
if(ar[i] == k){
return i;

}
}
return -1;

}
}

class BinarySearch implements Searchable{

public static int binarySearch(int arr[], int first, int last, int key){
int mid = (first + last)/2;
while(first <= last){
if (arr[mid] < key){
first = mid + 1;

}
else if (arr[mid] == key){
return mid;

}
else{
last = mid - 1;

}
mid = (first + last)/2;

}
if (first > last){
return -1;

}
return 0;

}

public int search(int[] ar, int k){
return binarySearch(ar,0,ar.length,k);

}
}

public class Main
{
public static void main (String[]args)
{
LinearSearch ls = new LinearSearch();
BinarySearch bs = new BinarySearch();
int[] arr={12,23,34,45,56,67,78,90};
int a = ls.search(arr, 45);
if(a==-1)
System.out.println("Not found");

else
System.out.println("Found at "+(a+1)+" index.");

int b = bs.search(arr, 90);
if(b==-1)
System.out.println("Not found");

else
System.out.println("Found at "+(b+1)+" index.");

}
}

Output
Found at 4 index.
Found at 8 index.

Q3]How does inheritance work in an interface? Why an Interface can
extend more than one Interface but a Class cannot extend more than
one class? Explain with an example code.

a) Java does not support the concept of multiple inheritances to avoid the diamond
problem encountered in C++ without using a virtual base class. However, Java supports
multiple interface inheritance where an interface extends more than one super
interface.

b)why an interface can extend more than one interface but a class can’t extend more than one
class

The interface is a pure abstraction model and does not have inheritance hierarchy like
classes. That's why interfaces are able to extend more than one interface but a class can't
extend more than one class because Java doesn't allow multiple inheritance, so the class is
restricted to extend only one class.
c)example:

interface Printable{

void print();

}

interface Showable{

void print();

}

class TestInterface implements Printable, Showable{

public void print(){System.out.println("Hello");}

public static void main(String args[]){

TestInterface obj = new TestInterface();

obj.print();

}

}

Output:
Hello

Q4]Write a Java program to create interfaces myCafe and myTrip having
methods eat() and travel() respectively. Create a class Holiday and
implement multiple inheritance to override the methods eat() and travel()
to print “ I am eating my food” and “ I am trying my route”.

interface myCafe{
public void eat();

}

interface myTrip{
public void travel();

}

class Holiday implements myTrip, myCafe{
public void eat(){
System.out.println("I am eating my food");

}
public void travel(){
System.out.println("I am trying my route");

}
}
public class Main
{

public static void main(String[] args) {
Holiday h = new Holiday();
h.eat();
h.travel();

}
}

Output
I am eating my food
I am trying my route

Q5]Define Package and discuss access protection of class members with
respect to package. In what ways can we include a package in our
program? Illustrate with examples.

a)
A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined
package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql
etc.

b) Ways to include package in java

There are three ways to access the package from outside the package.

1. import package.*;

2. import package.classname;

3. fully qualified name.

c) Access protection of class members with respect to package

Q6]Write a Package MCA which has one class Student. Accept student
detail (Name,USN,mARK) THROUGH PARAMETERIZED
CONSTRUCTOR.Write display() method to display details. Create a main
class which will use package and calculate total marks and percentage.

Q7]Explain the five keywords related to exception handling and write a
program to implement all the keywords

a) Five keywords of exception Handling

Example
public class JavaExceptionExample{
public static void main(String args[]){
try{
//code that may raise exception
int data=100/0;

}catch(ArithmeticException e){System.out.println(e);}
//rest code of the program
System.out.println("rest of the code...");
}
}

Output:
Exception in thread main java.lang.ArithmeticException:/ by zero
rest of the code…

Q8]Write a Java program to create a method that takes string as input and
throws an exception if the string does not contain vowels

public class Vowel_Check {
public static void main(String[] args) {
try {
String text = "Java handling and managing exceptions ";
// String text = "Typy gyps fly.";

System.out.println("Original string: " + text);
checkVowels(text);
System.out.println("String contains vowels.");
} catch (NoVowelsException e) {
System.out.println("Error: " + e.getMessage());
}
}

public static void checkVowels(String text) throws NoVowelsException {
boolean containsVowels = false;
String vowels = "aeiouAEIOU";

for (int i = 0; i < text.length(); i++) {
char ch = text.charAt(i);
if (vowels.contains(String.valueOf(ch))) {
containsVowels = true;
break;
}
}
if (!containsVowels) {
throw new NoVowelsException("String does not contain any vowels.");
}
}
}
class NoVowelsException extends Exception {
public NoVowelsException(String message) {
super(message);
}
}

Output
String contains vowels.

Output2
Error: String does not contain any vowels

Q9]What are checked and unchecked exceptions? Write a java program to
illustrate single try multiple catch statements.

a) Checked and unchecked exception

There are mainly two types of exceptions: checked and unchecked. An error is
considered as the unchecked exception.

1. Checked Exception

2. Unchecked Exception

3. Error

1) Checked Exception

The classes that directly inherit the Throwable class except RuntimeException and Error
are known as checked exceptions. For example, IOException, SQLException, etc.
Checked exceptions are checked at compile-time.

2) Unchecked Exception

The classes that inherit the RuntimeException are known as unchecked exceptions. For
example, ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException,
etc. Unchecked exceptions are not checked at compile-time, but they are checked at
runtime.

3) Error

Error is irrecoverable. Some example of errors are OutOfMemoryError,
VirtualMachineError, AssertionError etc.

b)

public class MultipleCatchBlock1 {

public static void main(String[] args) {

try{

int a[]=new int[5];

a[5]=30/0;

}

catch(ArithmeticException e)

{

System.out.println("Arithmetic Exception occurs");

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("ArrayIndexOutOfBounds Exception occurs");

}

catch(Exception e)

{

System.out.println("Parent Exception occurs");

}

System.out.println("rest of the code");

}

}

Output:

Arithmetic Exception occurs

rest of the code

Q10]Write a program that handles the following exceptions using one try and multiple
catch blocks

Division by Zero: Print “Invalid division”.

String parsed to a numeric variable: Print “Invalid division”.

Accessing an invalid index in string : Print “Index is invalid”

Accessing an invalid index in Array: Print “Array Index is invalid”

public class ProgramTen {

public static void main(String[] args) {

try {

int divbyzero = 5 / 0;

int stringIntoInt = Integer.parseInt("aniket");

String name = "aniket";

char wrongIndex = name.charAt(18);

int arr[] = new int[5];

System.out.println(arr[8]);

} catch (ArithmeticException e) {

System.out.println("Invalid Division");

} catch (NumberFormatException e) {

System.out.println("Format Mismatch");

} catch (StringIndexOutOfBoundsException e) {

System.out.println("Index is invalid");

} catch (IndexOutOfBoundsException e) {

System.out.println("Array Index is Invalid.");

}

}

}

Output

Invalid Division

