
CMR
INSTITUTE OF
TECHNOLOGY

US
N

Internal Assessment Test 2 – August 2023

Sub: Software Engineering Sub
Code:

22MCA2
3

Date
: 29/08/2023 Duration: 90

min’s
Max

Marks: 50 Sem: II Branc
h MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each
Module

PART I MARK
S

OBE

CO
RB
T

1 What is Object Oriented Analysis and Design? Describe the stages of Object
oriented methodology, used in software development.

OR
[10] CO1 L1

2 With respect to object oriented methodology, describe the following terms with
examples:
(a)Class (b) Polymorphism (c) Generalization (d) Abstract Class

[10] CO1 L1

3
PART II

Define the term model and mention the need for modeling. Describe the three
models which support for modeling system in different viewpoints.

OR

[10] CO3 L1

4 Differentiate between Association, Aggregation and Composition with suitable
examples. [10] CO3 L2

5
PART III

Explain Association Class, Qualified Association and Reflexive Association
with example.

OR
[10] CO1 L2

6 a. Explain different kinds of Multiple Inheritance with example and how to
represent it in a class diagram.

b. Describe Propagation of Operation with suitable example
[6+4]

CO3 L2

7 W
PART IV

a. Discuss how to apply constraints in Class Diagram
b. What is an Association End? What are the properties of end?

[4+6]
CO4

L2

8
OR

Write short notes on:
a). Enumeration (b) Multiplicity (c) Reification (d) Visibility

[10] CO4 L1

9
PART V

Draw class diagram for Railway Reservation System.
OR [10] CO5 L3

10 Draw Class diagram for Online Shopping System. [10] CO5 L3

Solution
PART I

What is Object Oriented Analysis and Design? Describe the stages of Object oriented methodology, used in
software development.

Ans. Object-oriented modeling and design is a way of thinking about problems using models

organized around real world concepts. The fundamental construct is the object, which combines

both data structure and behavior.

System conception: Software development begins with business analysis or users conceiving an

application and formulating tentative requirements.

● Analysis: The analyst scrutinizes and rigorously restates the requirements from the system

conception by constructing models. The analysis model is a concise, precise abstraction of what the

desired system must do, not how it will be done.

The analysis model has two parts-

Domain Model- a description of real world objects reflected within the system.

Application Model- a description of parts of the application system itself that are visible to the user.

E.g. In case of stock broker application-

Domain objects may include- stock, bond, trade & commission.

Application objects might control the execution of trades and present the results.

● System Design: The development teams devise a high-level strategy- The System

Architecture- for solving the application problem. The system designer should decide what

performance characteristics to optimize, chose a strategy of attacking the problem, and make

tentative resource allocations.

● Class Design: The class designer adds details to the analysis model in accordance with the

system design strategy. His focus is the data structures and algorithms needed to implement each

class.

● Implementation: Implementers translate the classes and relationships developed during

class design into a particular programming language, database or hardware. During implementation,

it is important to follow good software engineering practice.

OR

1 With respect to object oriented methodology, describe the following terms with examples:
(a)Class (b) Polymorphism (c) Generalization (d) Abstract Class

a. Class: A class is an abstraction that describes properties important to an application.
Each object is said to be an instance of its class.
An object has its own value for each attribute but shares the attribute names and operations with other instances
of the class.

B .Polymorphism: Polymorphism means that the same operation may behave differently for

different classes. For E.g. move operation behaves differently for a pawn than for the queen in a

chess game.

c. Generalization: Inheritance is also called generalization and is used to describe the relationship

between parent and child classes. A parent class is also called a base class, and a subclass is also

called a derived class. In the inheritance relationship, the subclass inherits all the functions of the

parent class, and the parent class has all the attributes, methods, and subclasses. Subclasses contain

additional information in addition to the same information as the parent class.

Abstract Class: An abstract class is a class that has no direct instances but whose descendant

classes have direct instances. A concrete class is a class that is instantiable; that is, it can have

direct instances. A concrete class may have abstract subclasses (but they, in turn, must have

concrete descendants). Only concrete classes may be leaf classes in an inheritance tree.

PART II
2 Define the term model and mention the need for modeling. Describe the three models which support

for modeling system in different viewpoints.
Ans. A model is an abstraction of something for the purpose of understanding it before building it.
Models serve several purposes.

• Testing a physical entity before building it. The medieval masons did not know modern physics, but
they built scale models of the Gothic cathedrals to test the forces on the structure. Engineers test scale
models of airplanes, cars, and boats in wind tunnels and water tanks to improve their dynamics. Both
physical models and computer models are usually cheaper than building a complete system and enable
early correction of flaws.

• Communication with customers. Architects and product designers build models to show their
customers. Mock-ups are demonstration products that imitate some or all of the external behavior of a
system.

• Visualization. Storyboards of movies, television shows, and advertisements let writers see how their
ideas flow. They can modify awkward transitions, dangling ends, and unnecessary segments before
detailed writing begins. Artists’ sketches let them block out their ideas and make changes before
committing them to oil or stone.

• Reduction of complexity. Perhaps the main reason for modeling, which incorporates all the previous
reasons, is to deal with systems that are too complex to understand directly. The human mind can cope
with only a limited amount of information at one time. Models reduce complexity by separating out a
small number of important things to deal with at a time.

OR

3 Differentiate between Association, Aggregation and Composition with suitable examples.

Ans. Aggregation is a stronger form of association. An association is a link connecting two classes. In UML,
a link is placed between the “whole” and the “parts” classes with a diamond head attached to the “whole”
class to indicate that this association is an aggregation Composition is really a strong form of aggregation.
Composition has only one owner. Composition cannot exist independent of their owner. Composition lives
or dies with their owner. It is represented using a filled diamond head. The main differentiator between
aggregation and composition is the lifecycle dependence between whole and part. In aggregation, the part
may have an independent lifecycle, it can exist independently. When the whole is destroyed the part may
continue to exist. Composition is a stronger form of aggregation. The lifecycle of the part is strongly
dependent on the lifecycle of the whole. When the whole is destroyed, the part is destroyed too. Aggregation
Example A car has many parts. A part can be removed from one car and installed into a different car. If we
consider a salvage business, before a car is destroyed, they remove all saleable parts. Those parts will
continue to exist after the car is destroyed. Composition Example For example, a building has rooms. A
room can exist only as part of a building. The room cannot be removed from one building and attached to a
different one. When the building ceases to exist so do all rooms that are part of it.

PART III
4 Explain Association Class, Qualified Association and Reflexive Association with example.

Ans. An association class is an association that is also a class. Like the links of an association, the
instances of an association class derive identity from instances of the constituent classes. Like a class,
an association class can have attributes and operations and participate in associations. You can find
association classes by looking for adverbs in a problem statement or by abstracting known values. In
Figure 3.17, accessPermission is an attribute of AccessibleBy. The sample data at the bottom of the
figure shows the value for each link. The UML notation for an association class is a box (a class box)
attached to the association by a dashed line.

A qualified association is an association in which an attribute called the
qualified disambiguates the objects for a “many” association end. It is possible to
define qualifier for one-to-many & many-to-many association.

OR

5 A. Explain different kinds of Multiple Inheritance with example and how to represent it in a
class diagram.
Ans.

b.Describe Propagation of Operation with suitable example.
Ans. Propagation (also called triggering) is the automatic application of an operation to a network of
objects when the operation is applied to some starting object. For example, moving an aggregate
moves its parts; the move operation propagates to the parts. Propagation of operations to parts is
often a good indicator of aggregation.
You can indicate propagation on class models with a small arrow indicating the direction and
operation name next to the affected association.

PART IV
a. a. Discuss how to apply constraints in Class Diagram

⮚ Ans. Constraint is a condition involving model elements, such as objects, classes,

attributes, links, associations, and generalization sets.

⮚ Class models capture many Constraints through their very structure. For example, the

semantics of generalization imply certain structural constraints.

⮚ The UML defines the following keyword s for generalization.

▪ Disjoint: The subclasses are mutually exclusive. Each object belongs to exactly one of

the subclasses.

▪ Overlapping: The subclasses can share some objects. An object may belong to more

than one subclass.

▪ Complete: The generalization lists all the possible subclasses.

▪ Incomplete: The generalization may be missing some subclasses.

⮚ Multiplicity is a constraint on the cardinality of a set. Multiplicity for an association

restricts the number of objects related to a given object.

⮚ Multiplicity for an attribute specifies the number of values that are possible for each

instantiation of an attribute.

b. What is an Association End? What are the properties of end?
an association end is an end of an association. A binary association has two ends, a ternary association
has three ends, and so forth. Following are few properties of associations:
■Association end name- An association end may have a name. The names within the proper context.
■Multiplicity- You can specify multiplicity for each association end.
■ Ordering- the objects have an explicit order.
■Bags and sequences. The objects for a “many” association end can also be a bag or sequence.
■Qualification. One or more qualifier attributes can disambiguate the objects for a “many” association
end.

Association ends have some additional properties.
■Aggregation. The association end may be an aggregate or constituent part.
■Changeability. This property specifies the update status of an association end. The possibilities are
changeable (can be updated) and readonly (can only be initialized).
■Navigability. Conceptually, an association may be traversed in either direction
■Visibility. Similar to attributes and operations, association ends may be public, protected, private, or
package

OR
9. Write short notes on:
a). Enumeration (b) Multiplicity (c) Reification (d) Visibility

a). An enumeration is a data type that has a finite set of values.
When constructing a model, one should carefully note enumerations, because they often occur & are
important to users.
Enumerations are also significant for an implementation; you may display the possible values with a
pick list & you must restrict data to the legitimate values.

b. Multiplicity

⮚ Multiplicity is a collection on the cardinality of a set, also applied to attributes

(database application).

⮚ Multiplicity of an attribute specifies the number of possible values for each

instantiation of an attribute. i.e., whether an attribute is mandatory ([1]) or an optional

value ([0..1] or * i.e., null value for database attributes) .

⮚ Multiplicity also indicates whether an attribute is single valued or can be a collection.

c. Reification

⮚ Reification is the promotion of something that is not an object into an object.

⮚ Reification is a helpful technique for Meta applications because it lets you shift the

level of abstraction.

⮚ On occasion it is useful to promote attributes, methods, constraints, and control

information into objects so you can describe and manipulate them as data.

As an example of reification, consider a database manager. A developer could write code for each
application so that it can read and write from files. Instead, for many applications, it is better idea to reify
the notion of data services and use a database manager.
d. Visibility

⮚ Visibility refers to the ability of a method to reference a feature from another class and

has the possible values of public, protected, private, and package.

⮚ Any method can access public features.

⮚ Only methods of the containing class and its descendants via inheritance can access

protected features.

⮚ Only methods of the containing class can access private features.

⮚ Methods of classes defined in the same package as the target class can access package

features

⮚ The UML denotes visibility with a prefix. ―+‖ public, ―-‖ private,

―#‖protected, ―~‖ package. Lack of a prefix reveals no information about

visibility.

PART V
10. Draw class diagram for Railway Reservation System.

OR
11. Draw Class diagram for Online Shopping System.

