Sub:

Programming Using C#

Duration: | 90 min’s | Max Marks: | 50 | Sem: v
Date: 24/06/23
Note : Answer FIVE FULL Questions, choosing ONE full question from each Module
PART I
1 Make a short note on Inheritance giving example.

ANS :

Inheritance provides you to reuse existing code and fast implementation time. The relationship
between two or more classes 1s termed as Inheritance. In essence, inheritance allows to extend the behavior
of a base (or parent/super) class by enabling a subclass to mherit core functionality (also called a derived
class/child class). All public or protected variables andmethods in the base class can be called n the derived
classes.

[nheritance and Constructors: As you know, a constructor 1s a special method of a class, which 1s used to
nitialize the members of the same class. A constructor is called by default whenever an object of a class 1s
created. It 1s important to note that a Base class constructors are not inherited by derived classes. Thus cannot
instantiate a base constructor using derived class object, so we need the “base™ keyword to access
constructor of the base class from within a derived class.

Inheritance 1s of four types, which are as follows: 1. Single Inheritance: Refers to mnheritance in which there
1s only one base class and one derived class. This means that a derived class mherits properties from single
base class. 11. Hierarchical Inheritance: Refers to inheritance in which multiple derived classes are inherited
from the same base class. 1. Multilevel Inheritance: Refers to inheritance in which a child class 1s derived
from a class, which in turn is derived from another class. 1v. Multiple Inheritance: Refers to nheritance in
which a child class 1s derived from multiple baseclass.C# supports single, hierarchical, and multilevel
inheritance because there 1s only a single base class. It does not support multiple inheritance directly.
InherDemn.cs = _al.-*_-:*_-c i ll:cx _Eq" : o

ffCreate a Base Class Object
Console. Write Lina "T'm accessing Base Class Object”);

BaseClass bo = new BaseClass ()

.dm = 10;

CMethod (]
Create a Derived Clasas Object
aele, Wntel ings{ ™ I'm
ivedClass dc

public vold BCMathod () [

Consobe. WiriteLins " 'm o Bose Class Method™);

corssing Derived Class Chjoct™);
new DerivedClass();

class DerivedClass:BaseClass|
public wvoi DCHMathad () | el

Console. WriteLine("I'm a Derived Class Method™) do . DCE
b Console WritcLinel “nPress ENTER o quit..™);
Console.Read () 7

o il OO e 2015/ Cnes e, = O [HEH

Page 1 of 13

Explain :

xtend the functionality of other classes.

‘lassical inheritance (“is-a” relationship):
¢ building a dependency between types. The basic idea behind classical inheritance is that new classes may

Classical Inheritance b) Containment / Delegation model

When “1s-a” relationship have established between classes, we

ssume that we wish to define two additional classes to model Animal and Dog. The hierarchy looks like as
shown below and we notice that Animal “is-a™ Mammal, Dog IS-A Animal, Hence dog IS-A mammal as
ell. In “1s-a™ model, base classes are used to define general characteristics that are common to all

kubclasses and classes are extended by using “:” operator. The derived classes inherit the base class's
properties and methods and clients of the derived class have no knowledge of the base class.

using System;

namespace Chapter4 Examples|{
class Animal {
public Animal () {

}
public void Greet() (
Console.WriteLine ("Hello
)
)
class Dog : Animal/
public Dog() {

)
}

Consocle.WriteLine ("Base class constructor”) ;

1 am kind of Animal™) ; | !

Conscle.WriteLine ("Denved class constructor") ;

class isademo(
static void Main() {
Dog d = new Dog();
d.Greet():;
Console.ReadKevy();

» filey///C/Users/Suma/Documents/Visua

up of other classes

relationship is known as "has-a" relationship

using System;
namespace Chapter4 Examples|{
class Engine{
public int horsepower;
public void start()

})
class Car|

public string make;
public Engine eng;
public void start() {
eng.start();
})

Console.WriteLine ("Engine Started!") ;

//Car has an Engine

Containment / Delegation model (“Has-A"): The "HAS-A" relationship specifies how one class is made

Consider we have two different classes Engine and a Car when both of these entities share each other’s
pbject for some work and at the same time they can exists without each other's dependency(havingtheir own
life time) and there should be no single owner both have to be an independent from each other than type of

Le. Association.

class hasademo({
static void Main() {

Console WriteLine("Manufacturing a Car”);
Car mycar = new Car();
mycar.make = "Toyoto";
Console WniteLine(*"Manufacturing a Engine to start car”),
mycar.eng = new Engine();
mycar.eng.horsepower =220;
Console WriteLine("\n***Car Details***");
Console.WriteLine("Brand:"+ mycar.make),
Console. WriteLine("Power; "+ mycar eng horsepower),
mycar.start ()
Console.Read();

} 1}

PART Il

What are the two ways of enforcing encapsulation? Give examples for both the methods

Page 2 0f 13

kincapsulalion using accessors and mutators: Rather than defining the data in the form of public, we can

Page 3 of 13

declare those fields as private so that we achieved encapsulation. The Private data are manipulated using
pccessor (get: store the data to private members) and mutator (set: to interact with the variable) methods.
Syntax:

set { |
get { |
A property defined with both a getter and a setter is called a read-write property. A property defined with
only a getter is called a read-only property. A property defined with only a setter is called a write-only
property.

Encanailatinn neino Pranertwe: 1+ Write.Onlv Pranerty: Pranertiec can he made write-anly_ Thic 1e

using System;
namespace Class_Demos |
class Student|
string studusn;
public Student () {
studusn="1RX12MCAQO1";
)
public string Studusn|
get(
return studusn;

} 1 file///C/Users/Sumay

class ReadOnly{
static void Main() {
Student stl = new Student():;
Console.WriteLine ("USN: "
+ stl.Studusn);
Console.ReadKey();

“static™ property: C# also supports “static” properties. The static members are accessed at the class
level, not from an instance (object) of that class. Static properties are manipulated in the same manner
as static methods, as seen here:

Example 2.5: Assume that the Student type defines a point of static data to represent the name of the
institution studying these students. You may define a static property as follows:

using System; namespace class StaticProperty(

Class Demos({ class static void Main() {

Student Student.Institution = "RNSIT";
string name, branch, usn; Conscle.WriteLine("InstitutionName:"
static string instName +Student.Institution);
public static string Institution Console.ReadKey();

}

set instName value) } c
get retum instName; ’ 8) N/l

Page 3 0f 13

using System;
namespace Class_Demos{
class Student|{
string studusn;
public Student () {

}
public string Studusn({
get{
return studusn;

)

}

class ReadOnly({

studusn="1RX12MCAQ1";

static void Main() {
Student stl = new Student():;
Console.WriteLine ("USN: "
+ stl.Studusn);
Console.ReadKey();

“static™ property: C# also supports “static” properties. The static members are accessed at the class
level, not from an instance (object) of that class. Static properties are manipulated in the same manner

as static methods, as seen here:;

Example 2.5: Assume that the Student type defines a point of static data to represent the name of the
institution studying these students. You may define a static property as follows:

using System; namespace

Class Demos(class

Student
string name, branch, usn,
static string instName
public static string Institution

set instName value
get retum instName;

class StaticProperty(
static void Main(){
Student.Institution = “"RNSIT";
Console.WriteLine("InstitutionName:"
+Student.Institution);
Console.ReadKey();
}
} e

} » file///C/Users/Suma/Documents)

Write a short note on:

i. Static data ii. Virtual method iii. base keyword

Page 4 0of 13

static data members:

'hen we declare a static field inside a class, it can be imtialized with a value or all un-imitiahzed static hields
utomatically get initialized to their default values when the class is loaded at first time. Characteristics: It is

nsible only within the class, but iis lifetime 1s the entire program. Only one copy of static data member will

xists for the entire class and is shared by all the objects of that class. No matter how many objects of a class
re created. All static variables are initialized to zero when the first object of its class is created.

C# base kevword: accessing base class field

using Sysiem;
public class Animal}

public string color = "white";
L]
¥

public class Dog: Animal

¥
L]

Page 6 of 13
-

string color = "black";
public void showColor()
{
Console. WriteLine(base.color);

Console WriteLine{color);

public class TestBase

¥
[}

public static void Main()

i
L}

Dog d = new Dog();
d.showColor();

Page 5 0f 13

PART 111

What is meant by the .Net delegate type? Explain the concept with example code.

Delegates: A delegate 1s special type of object that contains the details of a

o Torrvr ruasis, Mrad L !

public statig int AddBumiint p. imE

oY

piblic dalegate int Oparaklemiint p, int g);

method rather than data. OR A delegate 1s a class type object, which 15 used to mvoke a
method that has been encapsulated into 1t at the All delegates are implicitly derived from
the System.Delegate class.o Delegates are especially used for implementing events and the
call-back methods. ¢ A delegate is a reference type variable that holds the references to a
method of any class. #time of its creation. Uses: Suppose you need to create a program
that requires data, such as student information, to display it on a website. This data can be
retrieved by calling a method without having to know to compiler time which method 1 to
be mvoked. In this case, you need to create an object of delegate and encapsulate a
reference to that method mside the delegate object

[| o ugwhressie ik §) vl B[E

Page 6 of 13

\What are delegates? Explain with code example, the concept of multicasting with delegates.

Delegates: A delegate is special type of object that contains the details of a method rather than data.
OR A delegate is a class type object, which is used to invoke a method that has been encapsulated
into it at the All delegates are implicitly derived from Delegates are especially used for implementing
events and thesthe System.Delegate class. A delegate is a reference type variable that holds the
references to aecall-back methods. time of its creation. Uses: Suppose you need to create a
programemethod of any class. that requires data, such as student information, to display it on a
website. This data can be retrieved by calling a method without having to know to compiler time
which method is to be invoked. In this case, you need to create an object of delegate and encapsulate
a reference to that method inside the delegate object

0D 0 wpenarscory et w8 B vatig x B Weigat

i

Example 1 2
delegate void sample(int a,int b);

uﬁph slsnaw luplo‘u..;dd;.
sl 4= m,quby v fiesosee. - 2 IEN

sl 4= m.mul;

Page 7 of 13

PART IV

Explain exception handling with a sample program to handle multiple exceptions.

More than one exception could be raise by a sigle piece of code. To
nandle this type of situation, When an exception is thrown, each catch block 1s
hecked m turn to see if the exception thrown 1s theeyou can specify two or more

zatch block, each having a different type to handle various exceptions. When a

Page 4 of 9

match 1s found, the code within the catch block 1s executed. Only one catch
slock’s code 15 everesame type as, or derives from, that declared in the catch
statement. Exceptions thrown that do not match any of the declared types remain

nhandled.

-1 I]
¥
i
"

&

H .;' Fype e R0 s2RiTR

Page 8 of 13

Explain .NET Exception handling with valid example code

0 | 1 thanmuny- s X B v x B e Xor - 8 X

" 3 ” A N
LJ Ll e Coarizadi Vod 30 0 g 9 B :
1
- A s \ 2 " A " y N - o]
+ v .o W R L, A B M ' y W ity /‘ " / In’ ", U
V '
5
Example 2
151ng System;
i haptal npls
aee N F'aken|
statl id Main()
a e '
’ l - :
| 8 - ey
.1
1 4. e
1teh |l]A:‘jrf l;’ n ey
sole Writeline("Cannot be divide: {0)", ex);
ateh | IndexOutOfRangeException &
g Writaline("Index out of Ra " e
|
atch (Excent ax) |
W an o
ICR AN ¢ [|7, 8X))
ANs0le nepdrevi);
v V! St Sumt Ducuments Voo Snudie 2004 Pecti Chaplec) Enmmples Dhaler Eem.. e
|
X | "M f { NV \ f)\ | LEin Iv

Page 9 of 13

PARTV

Explain the architecture of ADO.NET with a neat diagram

ADO.NET provides a bridge between the front end controls and the back end database. The ADO.NET objects
encapsulate all the data access operations and the controls interact with these objects to display data, thus hiding
the details of movement of data.

Refer figure which shows the ADO.NET objects at

Data Set

.NET Framework Data Provider Data Table Collection

< .
Connection DataAdapter ' Data Table
Transaction Select Command Data Row Collection
Insert Command Data Column
Command [Collection
Parameters Updete Command Constraint Collection
Delete Command
DataReader]
D £ Data Relation Collection
A
5 x
v
XML
Database

Architecture of ADO.NET

Page 10 of 13

10

Describe how to implement the multiple events. Give example

Like delegates, events can be multicast. This enables multiple objects to
respond to an event notification, you used the += operator to add the event handler
=}

PR VRSP SR < PR

B W
ot Mea pat

MultibyventDemo.cs

o NhestgceianotscL. - O

[R enp————

. D

Croste o handier for this s

ge.Changed += new EventTestClass ValueChanged Event Hendber{med. HandlcChasget)
et Changed < = new EventTestChiss, ValueChaoged Eventasdler{mod HandleChangea);

Page 11 of 13

