CMR

INSTITUTE OF
TECHNOLOGY USN
Internal Assessment Test 111 — September 2023
. Sub 22MCA2
Sub: | Database Management System Code: 1
Date: 26-09-2023 Duration: ?O, Ma>.< 50 | Sem: | 1l | Branch: MCA
min’s | Marks:
Note : Answer FIVE FULL Questions, choosing ONE full question from each Module
OBE
PART I MARKS
CO | RBT
1 |Define Transaction. Discuss Transaction states with a neat diagram
[101 | cos| L3
OR
2 |[Explain various types of failure that may occur in a system. [10] co3l L3
PART II [10]
3
Why concurrency control and recovery are needed in DBMS? Explain types of co3| L3
problems that may occur when two simple transaction run concurrently with
examples. OR
4 li. Explain ACID properties of a transaction in detail. [10]
ii. When Two operations in a schedule are said to conflict explain with CO3| L3
example.
PART 111
5 |Write a brief note on 2PL with examples. CO5 L3
OR [10]
6 |Explain the select and project operation with syntax and examples. o4 13
[10]
PART IV [10] | CO4 L3
7 Explain Union, intersection and minus operation with examples.
OR
Consider the following COMPANY database [10] CO4 L3
8
EMP(Name,SSN,Salary,address, SuperSSN,Gender,Dno)
DEPT(DNum,Dname,MgrSSN)
PROJECT(Pname,Pnumber,Plocation,Dnum)

Write the relational algebra queries for the following

(i)Retrieve the name, address, salary of employees who work for the Research
department. (ii) Find the names of employees who work on all projects controlled
by department number 4. iii) Retrieve the SSN of all employees who either in
department no :4 or directly supervise an employee who work in dno 4.

PARTV
9 |Define Domains, Attributes,Tuples, and Relations and also explain the

10 CO5 L3
characteristics of relation. [10]

OR

10 |Explain the different Relational Model Constraints on databases [10] | CO5 L3

Solution:

1. Define Transaction. Discuss Transaction states with a neat diagram.

A transactionis an executing program that forms alogical unitof database processing. Atransaction
includes one or more database access operations—these can include insertion, deletion, modification,
or retrieval operations. The database operations that form a transaction can either be embedded within
an application program or they can be specified interactively via a high-level query language such as
SQL. One way of specifying the transaction boundaries is by specifying explicit begin transaction and
end transaction statements in an application program; in this case, all database access operations
betweenthe two are considered asforming one transaction. Asingle application program may contain
more thanone transaction ifitcontains several transaction boundaries. Ifthe database operationsina
transaction do not update the database but only retrieve data, the transaction is called a read-only
transaction; otherwise it is known as a read-write transaction.

State transition diagram illustrating the states for
transaction execution.
Read, Write
Begin ‘ l End

transaction T transaction T R = Commit e
o P Q\ch@ ——————— = Partially committed >~ @ommm@

Abort l Abort l

- =Failed)- Terminated >

Transaction States and Additional Operations

Atransactionisan atomic unit of work thatshould either be completed in its entirety or not done at
all. For recovery purposes, the system needs to keep track of when each transaction starts, terminates,
and commits or aborts . Therefore, the recovery manager of the DBMS needs to keep track of the
following operations:

Figure 21.4 shows a state transition diagram that illustrates how a transaction moves through its
execution states .Atransactiongoesinto an active stateimmediately afterit starts execution, where it
can execute its READ and WRITE operations. When the transaction ends, it moves to the partially
committed state. At this point, some recovery protocols need to ensure that a system failure will not
result in an inability to recard the changes of the transaction permanently (usually by recording changes
inthe system log). Once this check is successful, the transaction is said to have reached its commit point
and enters the committed state. When a transaction is committed, it has concluded its execution
successfully and all its changes must be recorded permanently in the database, even if a system failure
occurs.

However,atransactioncangotothefailedstateifone ofthe checksfailsorifthe transactionis aborted
during its active state. The transaction may then have to be rolled back to undo the effectof its WRITE
operations on the database. The terminated state corresponds to the transaction leaving the system.
Thetransactioninformation thatis maintained in systemtableswhilethe transaction hasbeenrunning
is removed when the transaction terminates. Failed or aborted transactions may be restarted later—
either automatically or after being resubmitted by the user—as brand new transactions.

2. Explain various types of failure that may occur in a system.

Types of Failures. Failures are generally classified as transaction, system, and media failures. There are
several possible reasons for a transaction to fail in the middle of execution:

1. A computer failure (system crash). A hardware, software, or network error
occurs in the computer system during transaction execution. Hardware
crashes are usually media failures—for example, main memory failure.

2. A transaction or system error. Some operation in the transaction may cause
it to fail, such as integer overflow or division by zero. Transaction failure may
also occur because of erroneous parameter values or because of a logical
programming error.” Additionally, the user may interrupt the transaction
during its execution.

3. Local errors or exception conditions detected by the transaction. During
transaction execution, certain conditions may occur that necessitate cancel-
lation of the transaction. For example, data for the transaction may not be
found. An exception condition," such as insufficient account balance in a
banking database, may cause a transaction, such as a fund withdrawal, to be
canceled. This exception could be programmed in the transaction itself, and
in such a case would not be considered as a transaction failure.

4. Concurrency control enforcement. The concurrency control method (see
Chapter 22) may decide to abort a transaction because it violates serializabil-
ity (see Section 21.5), or it may abort one or more transactions to resolve a
state of deadlock among several transactions (see Section 22.1.3).
Transactions aborted because of serializability violations or deadlocks are
typically restarted automatically at a later time.

5. Disk failure. Some disk blocks may lose their data because of a read or write
malfunction or because of a disk read/write head crash. This may happen
during a read or a write operation of the transaction.

6. Physical problems and catastrophes. This refers to an endless list of prob-
lems that includes power or air-conditioning failure, fire, theft, sabotage,
overwriting disks or tapes by mistake, and mounting of a wrong tape by the
operator.

3. Why concurrency control and recovery are needed in DBMS? Explain types of problems that may
occur when two simple transaction run concurrently with examples

Why Concurrency Control Is Needed

Several problems can occur when concurrent transactions execute in an uncontrolled manner. We
illustrate some of these problems by referring to a much simplified airline reservations database in
which arecord is stored for each airline flight. Each record includes the number of reserved seats on
that flight as a named (uniquely identifiable) data item, among other information. Figure 21.2(a) shows a
transaction T1 that transfers N reservations from one flight whose number of reserved seats is stored in
thedatabase itemnamed X to anotherflightwhose numberof reserved seatsis stored inthe database
item named Y. Figure 21.2(b) shows a simpler transaction T2 that just reserves M seats on the first flight
(X) referenced in transaction T1.2

(a) T, (b) T, Figure 21.2

- - Two sample transac-
read_item(X); read_item(X); tions. (a) Transaction
X =X—N,; X=X+M, 7,. (b) Transaction T,
write_item(X); write_item(X);
read_item(Y);
Y=Y+N,
write_item(Y);

Nextwediscussthetypes of problemswe mayencounterwiththese two simple transactionsifthey run
concurrently.

1)The Lost Update Problem. This problem occurs when two transactions that access the same database
items have their operations interleaved in a way that makes the value of some database items
incorrect.Suppose that transactions T1 and T2 are submitted at approximately the same time, and
supposethattheiroperationsareinterleavedasshownin Figure 21.3(a); thenthefinalvalue ofitem Xis
incorrectbecause T2readsthe value of Xbefore T 1 changesitinthedatabase,andhencethe updated
valueresultingfrom T1islost.Forexample,if X=80atthe start (originally there were 80 reservations on
the flight),N= 5 (T1 transfers 5 seat reservations from the flight corresponding to X to the flight
corresponding toY), and M=4 (T2 reserves 4 seats on X),thefinal resultshould be X=79.However,in
the interleaving of operations shown in Figure 21.3(a), it is X = 84 because the update in T1 that
removed the five seats from X was lost.

(a) T % Figure 21.3
Some problems that occur when concurrent
read_item(X): execution is uncontrolled. (a) The lost update
X=X-N: problem. (b) The temporary update problem.
read_item(X); (c) The incorrect summary problem.
X=X+ M,

Time write_item(X);

read_item(Y); wilte embith: Item X has an incorrect value because
d its update by T, is lost (overwritten).

Y=Y+N,

v write_item(Y);

2)The Temporary Update (or Dirty Read) Problem. This problemoccurs whenonetransactionupdatesa
database item and then the transaction fails for some reason .Meanwhile, the updated item is accessed
(read) by another transaction before it is changed back to its original value. Figure 21.3(b) shows an
examplewhere T1updatesitem X and thenfails before completion, sothe system mustchange Xback
toits original value. Before itcando so, however, transaction T2 reads the temporary value of X, which
willnotbe recorded permanently inthe database because ofthe failure of T1.The value of item X thatis
read by T2is called dirty databecause ithas been created by atransaction thathas notcompleted and
committed yet; hence, this problem is also known as the dirty read problem.

®) T, 2

read_item(X);
X =X-N;
write_item(X);

Time read_item(X);
X=X+ M,

write_item(X); . .
Transaction T, fails and must change

read_item(Y); the value of X back to its old value;
meanwhile T, has read the temporary
incorrect value of X.

3)The Incorrect Summary Problem. Ifone transactionis calculating an aggregate summary functionona
number of database items while other transactions are updating some of these items, the aggregate
function may calculate some values before they are updated and others after they are updated. For
example, suppose thatatransaction T3 is calculating the totalnumberofreservations on all theflights;
meanwhile, transaction T1 is executing. If the interleaving of operations shown in Figure 21.3(c) occurs,
the result of T3 will be off by an amount N because T3 reads the value of X after N seats have been
subtracted from it but reads the value of Y before those N seats have been addedto it.

(c) T, Ty

sum = 0,
read_item(A);
sum = sum + A;

read_item(X);
X=X-N,
write_item(X);
read_item(X);
sum =sum + X,
read_item(Y);
sum =sum+ Y,

T,reads X after N is subtracted and reads
-«—— Y before N is added; a wrong summary
is the result (off by N).

read_item(Y);
Y=Y+N,
write_item(Y);

4)The Unrepeatable Read Problem. Another problem that may occur is called unrepeatable read, where
atransaction T reads the same item twice and the item is changed by another transaction Tbetween the
two reads. Hence, T receives different values for its two reads of the same item. This may occur, for
example, if during an airline reservation transaction, a customer inquires about seat availability on
several flights. When the customer decides on a particular flight, the transaction then reads the number
of seats on that flight a second time before completing the reservation ,and it may end up reading a
different value for the item.

4.

i. Explain ACID properties of a transaction in detail.
Desirable Properties of Transactions

Transactions should possess several properties, often called the ACID properties; they should be
enforced by the concurrency control and recovery methods of the DBMS.

The following are the ACID properties:

¥ Atomicity. A transaction is an atomic unit of processing; it should either be
performed in its entirety or not performed at all.

® Consistency preservation. A transaction should be consistency preserving,
meaning that if it is completely executed from beginning to end without
interference from other transactions, it should take the database from one
consistent state to another.

® Isolation. A transaction should appear as though it is being executed in iso-
lation from other transactions, even though many transactions are executing

ii. When Two operations in a schedule are said to conflict explain with example.

Two operations in a schedule are said to conflict if they satisfy all three of the following conditions:

1. They belong to different transactions;
2. They access the same item X; and

3. Atleast one of the operations is a write_item(X).

Forexample, in schedule Sa , the operations "{X) and W2(X) conflict, as do the operations

"2(X) and Y1(X),),andtheoperationsw1(X)and w2(X). However, theoperationsr1(X)and r2(X)donot
conflict, since they are both read operations; the operations w2(X) and w1(Y) do not conflict, because
theyoperateondistinctdataitems Xand Y; and the operationsr1(X)and w1(X)donot conflict, because
they belong to the same transaction.

Aschedule S of ntransactions T1, T2, ..., Tn, is said to be a complete schedule if the following conditions
hold:

1. Theoperations in S are exactly those operationsin T1, T2, ..., Tn, including a commit or abort
operation as the last operation for each transaction in the schedule.

2. ForanypairofoperationsfromthesametransactionTi, theirorderofappearanceinSisthe
same as their order of appearance in Ti.

3. Foranytwo conflicting operations, one of the two must occur before the other in the schedule.

5. Write a brief note on 2PL with examples.

Two-Phase Locking

A transaction is said to follow the two-phase locking protocol if all locking operations (read_lock,
write_lock)precede thefirstunlock operationinthe transaction. Such atransaction canbe divided into
two phases.

Growing (first) phase: anexpanding orgrowing (first) phase, during which newlocks onitems can be
acquired but none can be released.

shrinking (second) phase :ashrinking (second) phase,during which existing locks can be released butno
new locks can be acquired.

Iflock conversionis allowed, then upgradingof locks (fromread-locked to write-locked) mustbe done
during the expanding phase, and downgrading of locks (from write-locked to read-locked) must be done
in the shrinking phase. Hence, aread_lock(X) operation that downgrades an already held write lock on X
can appear only in the shrinking phase.

Variations(Typesoftwophase locking) oftwo-phaselocking (2PL).
a)Basic,b) Conservative,c) Strict, and d)Rigorous Two-Phase Locking:

There are anumber of variations of two-phase locking (2PL). The technique just described is known as
basic 2PL.

A variation known as conservative 2PL (or static 2PL) requires a transaction to lock all the items it
accesses before the transaction begins execution,by predeclaring its read-set and write-set. The read-set
of atransaction is the set of allitems that the transaction reads, and the write-set is the set of allitems
that it writes._ If any of the predeclared items needed cannot be locked, the transaction does not lock
any item; instead, it waits until all the items are available forlocking. Conservative 2PL is a deadlock-
free protocol.

In practice, the most popular variation of 2PL is strict 2PL,which guarantees strict schedules . In this
variation, a transaction T does not release any of its exclusive (write) locks until after it commits or
aborts. Hence, no other transaction can read or write an item that is written by T unless T has
committed, leading to a strict schedule for recoverability. Strict 2PL is not deadlock-free .

A more restrictive variation of strict 2PL is rigorous 2PL, which also guarantees strict schedules. In this
variation, atransaction T does not release any of its locks (exclusive or shared) until afteritcommits or
aborts, and so it is easier to implement than strict 2PL.

Dealing with Deadlock and Starvation

Deadlock occurs when each transaction T in a set of two or more transactions is waiting for some item
that is locked by some other transaction Tin the set. Hence, each transaction in the setis in a waiting
queue, waiting for one of the other transactions in the set to release the lock on an item. Butbecause
the other transaction is also waiting, it will never release the lock.

A simple example is shown in Figure 22.5(a), where the two transactions T1and T2are deadlocked in a
partial schedule; T1is in the waiting queue for X, which islocked by T2, while T2is in the waiting queue
forY,whichislocked by T1. Meanwhile, neither T1nor T2norany othertransaction canaccessitems X

andY.
(a) T Y (b) X
I Y
read_lock(Y);
read_item(Y); @ @
read_lock(X);
Time read_item(X); 4 Y]
write_lock(X);
write_lock(Y);
Figure 22,5

lllustrating the deadlock problem. (a) A partial schedule of 7," and 7, that is

in a state of deadlock. (b) A wait-for graph for the partial schedule in (a).

6. Explain the select and project operation with syntax and examples.
The SELECT Operation

v

v

The SELECT operation 1s used to choose a subset of the tuples from a relation that satisfies a— selection
condition.

It restricts the tuples in a relation to only those tuples that— satisfy the condition.

It can also be visualized as a horizontal partition of the relation into two sets of tuples—those tuples that
satisfy the condition and are selected, and those tuples that do not satisfy the condition and are discarded.
For example, to select the EMPLOYEE tuples whose department 1s 4, or those whose salary 1s greater
than $30,000

cDno=4(EMPLOYEE)
oSalary=30000(EMPLOYEE)

In general, the SELECT operation is denoted by
a<selection condition=(R)

where the symbol o (sigma) is used to denote the SELECT operator and the selection condition 1s a
Boolean expression (condition) specified on the attributes of relation R.
The Boolean expression specified in 1s made up of a number of clauses of the form :
<attribute name><comparison op><constant value>
Or
<attribute name><comparison op><attribute name=>
Clauses can be connected by the standard Boolean operators and, or, and not to form a general selection
condition.
For example, to select the tuples for all employees who either work in department 4 and make over

$25,000 per vear, or work in department 5 and make over $30,000:

o(Dno=4 AND Salary=25000) OR (Dno=5 AND
Salary=30000)(EMPLOYEE)

v The Boolean conditions AND, OR, and NOT have their normal interpretation, as follows:
m (cond]l AND cond2) 1s TRUE if both {cond1) and (cond2) are TRUE; otherwise,it 1s FALSE.
m (condl OR cond2) 1s TRUE if either (cond1) or (cond2) or both are TRUE; otherwise, it 1s FALSE.
= (NOT cond) 1s TRUE if cond 1s FALSE; otherwise, it is FALSE.
¥" The SELECT operator is unary; that is, it is applied to a single relation. Hence, selection conditions
cannot involve more than one tuple.
v" The degree of the relation resulting from a SELECT operation—its number of attributes—is the— same
as the degree of R.
¥ The SELECT operation is commutative; that is,
o (condl){o(cond2)(R)) = o(cond2){s({cond1)(R))

JIhe PROJECT Operation
v" The PROJECT operation, selects certain columns from the table and discards the other columns.
v" The result of the PROJECT operation can be visualized as a vertical partition of the relation into two
relations: one has the needed columns (attributes) and contains the result of the operation, and the other
contains the discarded columns.

¥ For example, to list each employee’s first and last name and salary, we can use the PROJECT operation
as follows:

TlLname, Fname, Salary(EMPLOYEE)

v The general form of the PROJECT operation 1s

TC<attribute list=(R)
L |
where (p1) is the symbol used to represent the PROJECT operation, and is the desired sublist of attributes

from the attributes of relation R.

v" The result of the PROJECT operation has only the attributes specified in in the same order as they appear
in the list. Hence, its degree is equal to the number of attributes in <attribute list=.

¥ The PROJECT operation removes any duplicate tuples, so the result of the PROJECT operation is a set
of distinct tuples, and hence a valid relation. This is known as duplicate elimination.

7. Explain Union, intersection and minus operation with examples.

Jhe UNTON, INTERSECTION, and MINUS Operations

m UNION: The result of this operation, denoted by R U S, 15 a relation that includes all tuples that are either
in R orin S or in both R and 5. Duplicate tuples are eliminated.

m INTERSECTION: The result of this operation, denoted by R (1 S, 1s a relation that includes all tuples that
are in both R and 5.

m SET DIFFERENCE (or MINUS): The result of this operation, denoted by R — 5, is a relation that includes
all tuples that are in R but not in S.

¥ These are binary operations; that is, each is applied to two sets (of tuples).

¥ When these operations are adapted to relational databases, the two relations on which any of these three
operations are applied must have the same type of tuples: this condition has been called union
compatibility or type compatibility.

¥" Two relations R{Al, A2, ... , An) and S(B1, B2, Bn) are said to be union compatible (or type
compatible) if they have the same degree n and if dom(Ai) = dom(Bi) for 1 <1< n. This means that the
two relations have the same number of attributes and each corresponding pair of attributes has the same
domain.

¥ For example, to retrieve the Social Security numbers of all employees who either work in department 5
or directly supervise an employee who works in department 5,

DEP5 _EMPS « cDno=5(EMPLOYEE)

RESULT! « nSsn(DEP5_EMPS)

RESULT2(Ssn) «— nSuper_ssn(DEP5 EMPS)

RESULT « RESULTI U RESULT2

¥" Both UNION and INTERSECTION are commutative operations; that is,
RUS=SURand RNS=SNR

¥" Both UNION and INTERSECTION can be treated as n-ary operations applicable to any number of
relations because both are also associative operations; that is,
RUMBUT)=(RUSYUTand (RNS)NT=RN(SNT)
¥" The MINUS operation is not commutative; that is, in generaL R—S#S—R
¥ The INTERSECTION can be expressed in terms of union and set difference as follows:
RMNS=((RUS)—-(R-8))-(S—R)

8. Consider the following COMPANY database
EMP(Name,SSN,Salary,address, SuperSSN,Gender,Dno)
DEPT(DNum,Dname,MgrSSN)
PROJECT(Pname,Pnumber,Plocation,Dnum)

Write the relational algebra queries for the following

(i)Retrieve the name, address, salary of employees who work for the Research department.

query 1. Retrieve the name and address of all employees who work for the

research’ department.

REsEARCH_DEPT “— Opname=Research (DEPARTMENT)
RESEARCH-—EMPS « (RESEARCH_DEPT b - onEMPLOYEE)
RESULT € Tename, Lname, Address(RESEARCH_EMPS)

As a single expression, this query becomes

 addrass (OOname=Rescarc’ (DEPARTMENT
T o mberno EMPLOYEE))

(i) Find the names of employees who work on all projects controlled by department number 4.

Query 3. Find the names of employees who work on all the projects

controlled by department number 5.

DEPT5_PROJS(Pno) < Tpnumber(Tonum=s(PROJECT))
EMP_PROJ(Ssn, Pno) ¢ Teasn, Pro(WORKS_ON)
RESULT_EMP_SSNS « EMP_PROJ + DEPTS5_PROJS _
RESULT = Tty uume, Frame (RESULT_EMP_SSNS * EMPLOYEE)

iii) Retrieve the SSN of all employees who either in department no :4 or directly supervise an
employee who work in dno 4.
For example, to retrieve the Social Security numbers of all employees who either work in department 5
or directly supervise an employee who works in department 5,
DEP5_EMPS « 6Dno=5(EMPLOYEE)
RESULT1 « nSsn(DEP5_EMPS)
RESULTZ(Ssn) «— nSuper_ssn{DEP5 _EMPS)
RESULT « RESULT1 U RESULT2

9. Define Domains, Attributes, Tuples, and Relations and also explain the characteristics of relation.

¥ The relational model represents the database as a collection of relations.
Informally, each relation resembles a table of values or, to some extent, a flat file of records

v" A relation is thought of as a table of values, each row in the table represents a collection of related data
values.

v A row represents a fact that typically corresponds to a real-world entity or relationship. The table name
and column names are used to help to interpret the meaning of the values in each row.

¥ In the formal relational model terminology,
a row =>a tuple, a column header <*an attribute, and the table =a relation. The data type describing the
types of values that can appear in each column is represented by a domain of possible values.

Domains. Attributes. Tuples. and Relations

v A domain D is a set of atomic values. By atomic means each value in the domain is indivisible in formal
relational model. A common method of specifying a domain s to specify a data type from which the data
values forming the domain are drawn.

v Some examples of domains follow:

USA phone number: string of digits of length ten

SSN: string of digits of length nine0

Name: string of characters beginning with an upper case letter

GPA: a real number between 0.0 and 4.0

Sex: a member of the set | female, male }

Dept_Code: a member of the set { CMPS, MATH, ENGL, PHYS, PSYC, ... |

¥ A relation schema R, denoted by R(Al, A2, ... , An), is made up of a relation name R and a list of
attributes, Al, A2, An

¥ Attribute: Aiis the name of a role played by some domain D in the relation schema R. D is called the
domain of A1 and is denoted by dom{ Ai).

¥ Tuple: A tuple is a mapping from attributes to values drawn from the respective domains of those
attributes. A tuple 1s intended to describe some entity (or relationship between entities) in the miniworld.

¥ R is called the name of this relation.

¥ The degree (or arity) of a relation is the number of attributes n of its relation schema.

¥ A relation of degree seven, which stores information about university students, would contain seven
attributes describing each student as follows:
STUDENT(Name, Ssn, Home phone, Address, Office_phone, Age, Gpa)

¥ Relational Database: A collection of relations, each one consistent with its specified relational schema.

¥ A relation (or relation state) r of the relation schema R({Al, A2, ..., An), also denoted by r{R), is a set
of n-tuples r = {t1, 12, tm}. Each n-tuple t is an ordered hst of n values t =<vivo.. . v>

Cl .. f Relati
1. Ordering of Tuples in a Relation

v" A relation is defined as a set of tuples. Mathematically, elements of a set have no order among them;

hence, tuples in a relation do not have any particular order.

¥" Similarly, when tuples are represented on a storage device, they must be organized in some fashion,

and it may be advantageous, from a performance standpoint, to organize them mn a way that depends
upon their content.
2. Ordering of Values within a Tuple

v" The order of attributes and their values is not that important as long as the correspondence between
attributes and values 15 mamtaimned.

v A tuple can be considered as a set of (<attribute>,<value>) pairs, where each pair gives the value of
the mapping from an attribute Ai to a value vi from dom{Ai1). The ordening of attributes is not
important, because the attribute name appears with its value.

3. Values and NULLs in the Tuples

¥" Each value ina tuple is an atomic value; that is, it is not divisible into components.

¥ An important concept is NULL values, which are used to represent the values of attributes that may
be unknown or may not apply to a tuple.

¥ NULL values has several meanings, such as value unknown, value exists but is not available, or
attributedoes not apply to this tuple.

4. Interpretation (Meaning) of a Relation

v Each tuple in the relation can then be interpreted as a fact or a particular instance of the assertion.
v" Each relation can be viewed as a predicate and each tuple in that relation can be viewed as an
assertion for which that predicate is satisfied (1.e., has value true) for the combination of values in it.
v Example:There exists a student having name Benjamin Bayer, having SSN 305-61-2435, having age
19, etc

10. Explain the different Relational Model Constraints on databases.

Relational ModelConstraints on databases can generally be divided into three main categories:

1. Constraints that are inherent in the data model known as inherent model-based constraints or implicit
constraints.

2. Constraints that can be directly expressed in the schemas of the data model, typically by specifying them in
the DDL known as schema-based constraints or explicit constraints.

3. Constraimts that cannot be directly expressed in the schemas of the data model, and hence must be expressed
and enforced by the application programs or in some other way known as application-based or semantic

constraints or business rules.

The schema-based constraints include domain constraints, key constraints, constraints on NULLs, entity
integrity constraints, and referential integrity constraints.

1.

v

LS N

Domain Constraints
Domain constraints specify that within each tuple, the value of each attribute A must be an atomic value
from the domain dom(A).
The data types associated with domains typically include standard numeric data types for integers and real
numbers. Characters, Booleans, fixed-length strings, and variable-length strings are also available, as are
date, time, timestamp, and other special data types.

Key Constraints and Constraints on NULL Values
In the formal relational model, a relation is defined as a set of tuples.
By definition, all elements of a set are distinct; hence, all tuples in a relation must also be distinct.

This means that no two tuples can have the same combination of values for all their attributes. Usually,
there are other subsets of attributes of a relation schema R with the property that no two tuples in any
relation state r of R should have the same combination of values for these attributes.
Suppose that we denote one such subset of attributes by SK; then for any two distinct tuples t1 and t2 in a
relation state r of R, we have the constramnt that:
t1[SK] £12[SK]

v

v

A superkey SK specifies a uniqueness constraint that no two distinct tuples in any state r of R can have
the same value for SK.

A key k of a relation schema R is a superkey of R with the additional property that removing any
attribute A from K leaves a set of attributes K’ that is not a superkey of R any more.

Hence, a key satisfies two properties:

1. Two distinct tuples in any state of the relation cannot have identical values for (all) the attributes in the
key. This uniqueness property also applies to a superkey.

2. It 1s a minimal superkey—that 1s, a superkey from which we cannot remove any attributes and still
have the uniqueness constraint hold. This minimality property is required for a key but is optional for a
superkey.

Relational Databases and Relational Database Schemas

¥ A relational database 1s a collection of many relations.

¥ A relational database schema S is a set of relation schemas S = {R1, R2, ... , Rm} and a set of
integrity constraints IC.

¥ A relational database state DB of S is a set of relation states DB = {rl, r2, ... ,rm} such that each ri is
a state of Ri and such that the rirelation states satisfy the integrity constraints specified in IC.

¥" A relational database schema that we call COMPANY = {EMPLOYEE, DEPARTMENT,
DEPT_LOCATIONS, PROJECT, WORKS_ON, DEPENDENT}.

¥ When we refer to a relational database, we implicitly include both its schema and its current state. A
database state that does not obey all the integrity constraints is called not valid, and a state that
satisfies all the constraints in the defined set of integrity constraints IC is called a valid state.

Entity Integrity, Referential Integrity, and Foreign Keys

¥ The entity integrity constramnt states that no primary key value can be NULL. This 1s because the
primary key value is used to identify individual tuples in a relation.

v" Key constraints and entity integrity constraints are specified on individual relations.

v" The referential integrity constraint is specified between two relations and is used to maintain the
consistency among tuples in the two relations.

Other tyvpes of constraints

¥ The salary of an employee should not exceed the salary of the employee’s supervisor and the
maximum number of hours an employee can work on all projects per week is 56. Such constraints
can be specified and enforced within the application programs that update the database, or by using a

general-purpose constraint specification language. Sometimes called as Semantic Integrity
constraint.

