
Page 1 of 16

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 3– Sept. 2023

Sub: Mobile Applications
Sub

Code:
20MCA263

Date: 27/09/2023 Duration: 90 min’s
Max

Marks:
50 Sem: II Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each

Module

PART I MARKS

OBE

CO

RBT

1 Define Fragment. Explain the life cycle of fragment?

OR

[10] CO1

CO2
L1

2 Develop a Mobile Application to create a list of fruits using listview and

display the item selected by the user?

[10]
CO3 L3

3
PART II

What is the use of TimePicker Dialog? Explain with an example.

OR

[10]

CO3

CO4
L3

4

Illustrate with an example how to play video in an android application [10] CO3

CO4
L3

5
PART III

Discuss APK file deployment in detail and steps involved in publishing

android application

[10]

CO5 L2

 6
OR

Explain the process of getting input via dialog box with an example?

[10] CO3

CO2
L2

7
PART IV

Describe the steps for obtaining Google maps API key?

[10]

CO3

L2

8
OR

What is content provider list and explain built in content providers.

[10]

CO1

CO2

L2

9
PARTV

Explain the process of sending an SMS with an example?

OR

[10]

CO3

CO4
L3

10 What is a service? What are the different methods use to create a service?

Explain with an example.
[10] CO1

CO2

L2

Page 2 of 16

1. Define Fragment. Explain the life cycle of fragment?

A fragment is a combination of an activity and a layout and contains a set of views that make up an

independent and atomic user interface. For example, one or more fragments can be embedded in the activity

to fill up the blank space that appears on the right when switching from portrait to landscape.

onAttach()—Called when the fragment is attached to the activity.

onCreate()—Called when creating the fragment. The method is used to initialize the items of the fragment

that we want to retain when the fragment is resumed after it is paused or stopped. For example, a fragment

can save the state into a Bundle object that the activity can use in the oncreate() callback while re-creating

the fragment.

onCreateView()—Called to create the view for the fragment.

 onActivityCreated()—Called when the activity’s oncreate() method is returned.

 onStart ()—Called when the fragment is visible to the user. This method is associated with the activity’s

onstart ().

onResume ()—Called when the fragment is visible and is running. The method is associated with the

activity’s onResume ().

 onPause()—Called when the fragment is visible but does not have focus. The method is attached to the

activity’s onPause().

onStop()—Called when fragment is not visible. The method is associated with the activity’s onStop().

onDestroyView()—Called when the fragment is supposed to be saved or destroyed. The view hierarchy is

removed from the fragment.

onDestroy()—Called when the fragment is no longer in use. No view hierarchy is associated with the

fragment, but the fragment is still attached to the activity.

onDetach()—Called when the fragment is detached from the activity and resources allocated to the fragment

are released.

2.Develop a Mobile Application to create a list of fruits using listview and display the item selected by

the user?

XML File

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <ListView

 android:id="@+id/listView1"

 android:layout_width="match_parent"

 android:layout_height="277dp" >

 </ListView>

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="TextView" />

</LinearLayout>

Java File

package com.example.listex2;

import android.app.Activity;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

Page 3 of 16

import android.widget.AdapterView;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import android.widget.TextView;

import android.widget.AdapterView.OnItemClickListener;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 final String[] fruits={"apple","mango","grapes","orange","banana"};

 final TextView selectedOpt=(TextView)findViewById(R.id.textView1);

 ListView fruitsList=(ListView)findViewById(R.id.listView1);

 final ArrayAdapter<String> arrayAdpt=new

ArrayAdapter<String>(this,android.R.layout.simple_list_item_1,fruits);

 fruitsList.setAdapter(arrayAdpt);

 fruitsList.setOnItemClickListener(new OnItemClickListener(){

 @Override

 public void onItemClick(AdapterView<?> parent,View v,int position,long id)

 {

 selectedOpt.setText("you have selected"+fruits[position]);

 }

 });

}

}

3. What is the use of TimePicker Dialog? Explain with an example.

Time Picker

The TimePickerDialog allows us to set or select time through the built-in Android TimePicker view. We can

set the values of hour and minute with values of hour ranging from o through 23 and minutes from 0 through

59. The dialog provides a callback listener, OnTimeChangedListener Or OnTimeSetListener, which tells us

when a time is changed or set by the user.

Next, we need to write code into the Java activity file TimePickerAppActivity.java to

perform the following tasks:

> Invoke the TimePickerDialog when the Button control is clicked.

> Display the current system time in the TextView control.

> Use the calendar instance to initialize TimePickerDialog to display the current

Page 4 of 16

system time.

> Display the newly set time in the TextVview control.

4. Illustrate with an example how to play video in an android application

Playing Video:

 To play video in an application, Android provides a videoview control, which, along with the

MediaController, provides several buttons for controlling video play. These buttons allow us to play, pause,

rewind, and fast-forward the video content displayed via the VideovView control. To understand the steps

for playing a video, let’s create a new Android project called PlayvideoApp. We can play a video that is

available on the Internet or one that is loaded onto an SD card of our device or emulator.

Page 5 of 16

We capture the videoview control from the layout and map it to the videoview object. Then we use a

MediaController and set it the media controller of the videoview object. The videoview object is used for

displaying video content and the button controls that enable us to perform play, pause, rewind, or fast-

forward actions on the video. A MediaController provides these buttons. Hence the videoview’s media

controller is set by calling setMediaController() to display the different button controls. Then, we use the

setVideoPath() method of the videoview object to refer to an SD card (sdcard) for the video.mp4 file. We

can also use set VideoURI() method to access the video from the Internet. After setting the focus to the

videoview control through request Focus () method, we use its start () method to start the video.

5. Discuss APK file deployment in detail and steps involved in publishing android application.

Following are the steps to publish an Android application:

Page 6 of 16

1. Set the versioning information of the application.

2. Generate a certificate, digitally sign the Android | application, and generate the APK (Android

Package) | file. Android applications are distributed as Android package files (.APK).

3. Distribute to Google Play or other marketplace to host and sell our application.

Setting Versioning Information of an Application

We need three things to essentially inform users about our application:

 » The features that our application requires to run—for example, whether it requires Bluetooth, multitouch

screen, and so on, to operate

» The necessary hardware configuration that our application requires for running

» The permissions that our application requires to operate

To inform users about these three things, we use the three tags <uses-features>, <uses-configuration>, and

<uses-permission> in our AndroidManifest.xml file.

Generating a Certificate, Digitally Signing the Android Applications, and Generating the APK

Signing Applications Using the Export Android Application Wizard

The Export Android Application Wizard simplifies the process of creating and signing our application

package. To launch the wizard, follow these steps:

1. Select the Android project in the Package Explorer window and select the File, Export Option or right-

click the project in the Package Explorer window and select the Export option.

2. In the Export dialog, expand the Android item and select Export Android Application. Click Next.

3. Our Android project name, createServiceApp, is displayed in the Project box. Click Next.

4. The next dialog prompts us to either select an existing keystore or create a new one. Select the create new

keystore option to create a new certificate, that is, keystore, for our application. In the Location box, specify

Page 7 of 16

the name and path of the keystore. Assign the name as CreateService to our new keystore. In the Password

and Confirm boxes, enter the password to protect the keystore. After entering the password , click Next.

5. Provide an alias for the private key and enter a password to protect the private key. Applications

published on Google Play require a certificate with a validity period ending after October 22, 2033. Hence,

enter a number that is greater than 2033 minus the current year in the validity box. Also fill the First and

Last Name box with your name and click Next.

6. Enter a path to store the destination APK file. Click Finish.

Once you have signed your APK files, you need a way to get them onto your users’ devices. Three methods

are here:

 Deploying manually using the adb.exe tool

 Hosting the application on a web server

 Publishing through the Android Market

Distributing Applications with Google Play

6. Explain the process of getting input via dialog box with an example?

An AlertDialog is a popular method of getting feedback from the user. This pop-up dialog remains there

until closed by the user and hence is used for showing critical messages that need immediate attention or to

get essential feedback before proceeding further.

In the appliaction

> Dynamically create an EditText control and set it as part of the AlertDialog to

prompt the user for input.

> Add a TextView control to the layout file to display the data entered by the user in AlertDialog.

To make it more specific, our application asks the user to input a name through AlertDialog, and when the

user selects the ok button after entering a name, a welcome message is displayed through the TextView

control defined in the layout file. We also add a Cancel button to the AlertDialog, allowing the user to

cancel the operation, which terminates the dialog.

Page 8 of 16

Next we add code to the Java Activity file AlertDialogAppActivity.java to do the

following tasks:

> Dynamically create an EditText control and set it as the content of the AlertDialog.

> Access the TextView control from the layout file main.xml and map it to a TextView object.

> Fetch the name entered by the user in the EditText control and assign it to the

TextView object for displaying a welcome message.

>Register an event listener for the cancel button. Recall that the purpose of the

Cancel button is to cancel the operation and terminate the AlertDialog.

Page 9 of 16

7. Describe the steps for obtaining Google maps API key?

We need to apply for a free Google Maps API key before you can integrate Google Maps into your Android

application. The steps for obtaining a Google key are as follows:

1. To get a Google key, the application needs to be signed with a certificate and you need to notify Google

about the Hash (MDS) fingerprint of the certificate. To test the application on the Android emulator, search

for the SDK debug certificate located in the default folder: c:\Users\<user_name\.android. The filename of

the debug certificate is debug. keystore. For deploying to a real Android device, substitute the

debug.keystore file with your own keystore file.

2. Copy the debug.keystore to any drive.

3. Using the debug keystore certificate, extract its MDS fingerprint using the keytool. exe application

provided with the JDK installation. This fingerprint is needed to apply for the free Google Maps key. The

keytool .exe file can be found in the c: \ Program Files\Java\jdk_version_number\bin folder.

4. Open the command prompt and go to the c:\Program Files\Java\jdk_version_ number\bin folder using the

cb command.

5. Issue the following command to extract the MDS fingerprint:

keytool.exe -list -alias androiddebugkey -keystore "E:\debug.keystore" -storepass android -keypass android

Page 10 of 16

Now you need to sign up for the Google Maps API. Open the browser and go to http: // code

.google.com/android/maps-api-signup.htm1. Follow the instructions on the page and supply the extracted

MDS fingerprint to complete the signup process and obtain the Google Maps key. After successful

completion of the signup process, the Google Maps API key is displayed.

8. What is content provider list and explain built in content providers.

A content provider acts as a data store and provides an interface to access its contents. Unlike a database,

where information can be accessed only by the package in which it was created, information in a content

provider can be shared across packages. The following lists a few characteristics of content providers:

> Like in a database, we can query, add, edit, delete, and update data in content providers.

» Data can be stored in a database, files, and over a network.

 >» A content provider acts as a wrapper around the data store to make it resemble web services. That is, the

data in content providers is exposed as a service.

Content Providers Application

The contact information on our device can be accessed in an Android application. Let’s create a new

Android project called content ProviderApp. This application accesses the contact information and displays

it via Listview.

Activity_content_provider_app.xml

ContentProviderAppActivity.java

package com.androidunleashed.contentproviderapp;

import android.app.Activity;

import android.os.Bundle;

import android.net.Uri;

import android.database.Cursor;

import android.content.CursorLoader;

import android.provider.ContactsContract;

import android.widget.ListView;

import java.util.ArrayList;

import android.widget.ArrayAdapter;

public class ContentProviderAppActivity extends Activity {

 ArrayList<String> contactRows=new ArrayList<String>();

 final String[] nocontact={"No Contacts on the Device"};

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_content_provider_app);

 final ListView contactsList=(ListView) findViewById(R.id.contactslist);

 Uri contactsUri = Uri.parse("content://contacts/people");

 String[] projection = new String[] {ContactsContract.Contacts._ID,

ContactsContract.Contacts.DISPLAY_NAME };

 Cursor c;

 CursorLoader cursorLoader = new CursorLoader(this, contactsUri, projection, null, null , null);

Page 11 of 16

 c = cursorLoader.loadInBackground();

 contactRows.clear();

 c.moveToFirst();

 while(c.isAfterLast()==false){

 String contactID = c.getString(c.getColumnIndex(ContactsContract.Contacts._ID));

 String contactDisplayName =

c.getString(c.getColumnIndex(ContactsContract.Contacts.DISPLAY_NAME));

 contactRows.add(contactID+ " "+contactDisplayName);

 c.moveToNext();

 }

 if (c != null && !c.isClosed()) {

 c.close();

 }

 if(contactRows.isEmpty()) {

 ArrayAdapter<String> arrayAdpt=new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, nocontact);

 contactsList.setAdapter(arrayAdpt);

 }

 else {

 ArrayAdapter<String> arrayAdpt=new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, contactRows);

 contactsList.setAdapter(arrayAdpt);

 }

 }

}

We define a contactsuri URI for the Contacts provider. Thereafter, a projection String array is defined to

specify the columns that we want to extract from the contacts database. With the help of a cursorLoader, we

load rows from the Contacts provider and assign them to the cursor c. Thereafter, through a while loop, the

information in the cursor is extracted. Because we want to display only the ID and contact name, the

informationn the contactsContract.Contacts. ID and ContactsContract.Contacts. DISPLAY_NAME

Columns is accessed and assigned to the contactRows ArrayList. If contactRows is not empty, an

ArrayAdapter object called arrayAdpt is defined through it. Finally, a ListView control is filled with the

information in the arrayaAdpt ArrayAdapter. To access information in the Contacts Provider in our app, we

need to add the following permission into the AndroidManifest .xml file:

<uses-permission android:name="android.permission.READ_CONTACTS"/>

9. Explain the process of sending an SMS with an example?

Create a new Android project called sendsmMsapp. The first step is to design the user interface for sending

messages via SMS. The user interface consists of three TextView, two EditText, and two Button controls.

One of the Text View controls is for displaying the title of the screen, Message Sending Form. The other

two TextView controls are used on the left of the EditText controls to display text that tells the user what

has to be entered in the EditText controls. These two TextView controls are used to display To: and

Message:. The two EditText controls are used to enter the phone number of the recipient and the message to

be sent.

Getting Permission to Send SMS Messages

To send and receive SMS messages in an application, we need to use permissions. Add permissions to the

element of Our AndroidManifest.xml file:

AndroidManifest.xml

<uses-permission android:name="android.permission.SEND_SMS"/>

Page 12 of 16

Activity_send_smsapp.xml

SendSMSAppActivity.java

Page 13 of 16

Page 14 of 16

To send an SMS message with Java code, we use the SmsManager Class. We cannot instantiate this class

directly and must call the getDefault () static method to create its object. The method provided by the

smsManager Class for sending SMS messages is the sendText - Message‘) method. The syntax for the

sendTextMessage() method is

sendTextMessage (recipient phoneno, service _centadd, sms_msg, sent_intent, delivery_intent)

where recipient _phoneno is the recipient’s phone number, and service_centadd is the Service center

address. We use the value nul11 for the default smMsc (Short Message Service Center). The sms_msg is the

text message of the SMS, sent Intent is the pending

Intent to invoke when the message is sent, and delivery_Intent is the pending Intent to invoke when the

message is delivered. To monitor the status of the SMS message and confirm if it was sent correctly, we

create two PendingIntent objects that are then passed as arguments to the sendTextMessage () method. The

two PendingIntent objects are created with the following statements:

String SENT = "SMS SENT";

 String DELIVERED = "SMS DELIVERED";

final PendingIntent sentPendIntent = PendingIntent.getBroadcast (this, 0, new Intent (SENT), 0);

final PendingIntent delivered pendintnet = PendingIntent.getBroadcast (this, 0, new Intent (DELIVERED),

0);

The two PendingIntent objects are passed into the last two arguments of the sendText - Message () method:

SmsManager sms = SmsManager.getDefault () ;

sms .sendTextMessage (phoneNumber.getText () .toString(), null, message.getText(). ToString (),

sentPendIntent, delivered_pendintnet);

We are informed, via the two PendingIntent objects, whether the message was successfully sent, delivered,

or failed. The SmsManager fires SENT and DELIVERED when the SMS messages are sent and delivered.

The two PendingIntent objects are used to send broadcasts when an SMS message is sent or delivered. We

also create and register two BroadcastReceivers, which listen for Intents that match SENT and

DELIVERED as shown by the following statements:

registerReceiver(sentReceiver, new IntentFilter(SENT)) ;

registerReceiver (deliveredReceiver, new IntentFilter (DELIVERED)) ;

10. What is a service? What are the different methods use to create a service? Explain with an

example.
A service is an application component that performs the desired task without providing a user interface.

Hence, services can only be accessed from another application and never invoked by a user. A service does

not create its own thread. Instead it runs in the main thread of the application. So, to maintain efficiency of

an application, we should create a new thread within the service to perform its processing tasks.

To create a service, define a class that extends the Service base class. All services extend the Service class.

The methods that we can implement in the class are

onBind()—The method returns an IBinder object that enables an activity to use a Service that can directly

access members and methods inside it.

 onStartCommand()—Called when the Service starts. The method is used to check whether any data is

passed to the Service for processing. We can also use this method to return a constant that configures the

service. For example, we can make the method return the constant start_sticky, which makes the Service run

until it is explicitly stopped.

onDestroy()—Called when the Service is stopped using the stopService() method.

With this method, we release resources consumed by the Service.

Following arethe methods used for starting, stopping, binding, and unbinding from the service.

To start a Service, use the startService() method. The following example starts the Service represented by

HandleService.class file:

startService(new Intent (getBaseContext (), HandleService.class) ;

To start a Service from an external application, we need to define its complete package name. The following

example starts the HandleService.class Service from an external application:

startService (new Intent ("com.androidunleashed.handleservice"));

To stop a Service, use the stopService() method. The following example stops the HandleService.class

Service:

Page 15 of 16

stopService (new Intent (getBaseContext(), HandleService.class));

A client can bind to the Service with the bindservice() method. The following example binds the client to the

HandleService.class Service using the ServiceConnection:

bindService (new Intent (this, HandleService.class), servConn, Context.BIND AUTO CREATE) '

The client(s) can be unbound from the Service with the unbindService() method.

The following example unbinds the service that is connected through the servconn ServiceConnection:

unbindService (servConn) ;

To understand how to use a started Service, we create a new Android project called

CreateServiceApp.

Page 16 of 16

public class CreateServiceAppActivity extends Activity {

