
Page 1 of 16

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 3– July. 2023

Sub: Advanced Web Technologies
Sub

Code:
20MCA41

Date: 22/7/2023 Duration: 90 min’s Max Marks: 50 Sem: IV Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I MARKS

OBE

CO

RBT

1 What is Ajax? Explain with an diagram how it is different from traditional

web applications.

OR

[10]

CO3 L2

2 With a neat diagram explain Ajax web application model [10] CO3 L2

3

PART II

With an example illustrate sending data to server using GET method for

HTTPRequest Object

OR

[10] CO3 L3

4

With an example illustrate sending data to server using POST method for

HTTPRequest Object

[10]
CO3 L3

5

PART III

How to handle multiple XMLHTTPRequest objects in the same page

[10]
CO5 L3

 6

OR

How to handle multiple XMLHTTPRequest objects in the same page using

array

[10]

CO5 L3

7

PART IV

Explain the pattern of predictive fetch using Ajax

[10]

CO3

L3

8

OR

Write a note on submission throttling

[10]

CO3

L3

9

PARTV

With example explain pattern of periodic refresh and fallback pattern in Ajax

OR

[10]
CO3 L3

10 Illustrate how to implement multistage download [10] CO3 L5

Page 2 of 16

Q1) What is Ajax? Explain with an diagram how it is different from traditional web applications.

 AJAX stands for – Asynchronous JavaScript and XML
 Ajax is nothing more than an approach to web interaction. This approach involves transmitting

only a small amount of information to and from the server in order to give the user the most
responsive experience possible.

 Ajax is a set of web development techniques using many web technologies on the client side to
create asynchronous web applications. With Ajax, web applications can send and retrieve data
from a server asynchronously without interfering with the display and behaviour of the
existing page

 Ajax is nothing more than an approach to web interaction. This approach involves transmitting
only a small amount of information to and from the server in order to give the user the most
responsive experience possible.

 Instead of the traditional web application model where the browser itself is responsible for
initiating requests to, and processing requests from, the web server, the Ajax model provides
an intermediate layer —what Garrett calls an Ajax engine— to handle this communication. An
Ajax engine is really just a JavaScript object or function that is called whenever information
needs to be requested from the server. Instead of the traditional model of providing a link to
another resource (such as another web page), each link makes a call to the Ajax engine, which
schedules and executes the request. The request is done asynchronously, meaning that code
execution doesn’t wait for a response before continuing.

 The server — which traditionally would serve up HTML, images, CSS, or JavaScript — is
configured to return data that the Ajax engine can use. This data can be plain text, XML, or any
other data format that you may need. The only requirement is that the Ajax engine can
understand and interpret the data

 When the Ajax engine receives the server response, it goes into action, often parsing the data
and making several changes to the user interface based on the information it was provided.
Because this process involves transferring less information than the traditional web
application model, user interface updates are faster, and the user is able to do his or her work
more quickly. Figure below is an adaptation of the figure in Garrett’s article, displaying the
difference between the traditional and Ajax web application models.

Page 3 of 16

Q2) With a neat diagram explain Ajax web application model

 AJAX stands for – Asynchronous JavaScript and XML
 Ajax is nothing more than an approach to web interaction. This approach involves transmitting

only a small amount of information to and from the server in order to give the user the most
responsive experience possible.

 Ajax is a set of web development techniques using many web technologies on the client side to
create asynchronous web applications. With Ajax, web applications can send and retrieve data
from a server asynchronously without interfering with the display and behaviour of the
existing page

 Ajax is nothing more than an approach to web interaction. This approach involves transmitting
only a small amount of information to and from the server in order to give the user the most
responsive experience possible.

 Instead of the traditional web application model where the browser itself is responsible for
initiating requests to, and processing requests from, the web server, the Ajax model provides
an intermediate layer —what Garrett calls an Ajax engine— to handle this communication. An
Ajax engine is really just a JavaScript object or function that is called whenever information
needs to be requested from the server. Instead of the traditional model of providing a link to
another resource (such as another web page), each link makes a call to the Ajax engine, which
schedules and executes the request. The request is done asynchronously, meaning that code
execution doesn’t wait for a response before continuing.

 The server — which traditionally would serve up HTML, images, CSS, or JavaScript — is
configured to return data that the Ajax engine can use. This data can be plain text, XML, or any
other data format that you may need. The only requirement is that the Ajax engine can
understand and interpret the data

 When the Ajax engine receives the server response, it goes into action, often parsing the data
and making several changes to the user interface based on the information it was provided.
Because this process involves transferring less information than the traditional web
application model, user interface updates are faster, and the user is able to do his or her work
more quickly. Figure below is an adaptation of the figure in Garrett’s article, displaying the
difference between the traditional and Ajax web application models.

Q3) With an example illustrate sending data to server using GET method for HTTPRequest Object

Page 4 of 16

<html>
 <head>
 <title>An Ajax example</title>
 <script language = "javascript">
 var ajaxobj = false;
 if (window.XMLHttpRequest) {
 ajaxobj = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 ajaxobj = new ActiveXObject("Microsoft.XMLHTTP");
 }
 function getData(dataSource, divID){
 if(ajaxobj) {
 var obj = document.getElementById(divID);
 ajaxobj.open("GET", dataSource);
 ajaxobj.onreadystatechange = function()
 {
 if (ajaxobj.readyState == 4 &&
 ajaxobj.status == 200) {
 obj.innerHTML = ajaxobj.responseText;
 }
 }

 ajaxobj.send(null);
 }
 }
 </script>
 </head>
 <body>
 <H1>An Ajax example</H1>
 <form>
 <input type = "button" value = "Fetch the first message"
 onclick = "getData('dataresponder.php?data=1', 'targetDiv')">
 <input type = "button" value = "Fetch the second message"
 onclick = "getData('dataresponder.php?data=2', 'targetDiv')">
 </form>
 <div id="targetDiv">
 <p>The fetched message will appear here.</p>
 </div>
 </body>
</html>

dataresponder.php
<?php
 if ($_GET["data"] == "1") {
 echo 'The server got a value of 1';
 }
 if ($_GET["data"] == "2") {
 echo 'The server got a value of 2';
 }
?>

Q4) With an example illustrate sending data to server using POST method for HTTPRequest Object

<html>

Page 5 of 16

 <head>
 <title>An Ajax example</title>
 <script language = "javascript">
 var XMLHttpRequestObject = false;
 if (window.XMLHttpRequest) {
 XMLHttpRequestObject = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 XMLHttpRequestObject = new
ActiveXObject("Microsoft.XMLHTTP");
 }
 function getData(dataSource, divID, data){
 if(XMLHttpRequestObject) {
 var obj = document.getElementById(divID);
 XMLHttpRequestObject.open("POST", dataSource);
 XMLHttpRequestObject.setRequestHeader('Content-Type',
'application/x-www-form-urlencoded');
 XMLHttpRequestObject.onreadystatechange = function()
 {
 if (XMLHttpRequestObject.readyState == 4 &&
 XMLHttpRequestObject.status == 200) {
 obj.innerHTML =
XMLHttpRequestObject.responseText;
 }
 }

 XMLHttpRequestObject.send("data="+data);
 }
 }
 </script>
 </head>
 <body>
 <H1>An Ajax example</H1>
 <form>
 <input type = "button" value = "Fetch the first message"
 onclick = "getData('dataresponder.php','targetDiv',1)">
 <input type = "button" value = "Fetch the second message"
 onclick = "getData('dataresponder.php','targetDiv',2)">
 </form>
 <div id="targetDiv">
 <p>The fetched message will appear here.</p>
 </div>
 </body>
</html>

dataresponder.php
<?php
 if ($_GET["data"] == "1") {
 echo 'The server got a value of 1';
 }
 if ($_GET["data"] == "2") {
 echo 'The server got a value of 2';
 }
?>

Page 6 of 16

Q5) How to handle multiple XMLHTTPRequest objects in the same page

Program.html
<html>
<head>
<title>Using Two XMLHttpRequest Objects</title>
<script language = "javascript">
 var XMLHttpRequestObject1 = false;
 if (window.XMLHttpRequest)
 {
 XMLHttpRequestObject1 = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 XMLHttpRequestObject1 = new ActiveXObject("Microsoft.XMLHTTP");
 }
 var XMLHttpRequestObject2 = false;
 if (window.XMLHttpRequest) {
 XMLHttpRequestObject2 = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 XMLHttpRequestObject2 = new ActiveXObject("Microsoft.XMLHTTP");
}
function getData1(dataSource, divID)
{
if(XMLHttpRequestObject1)
 {
 var obj = document.getElementById(divID);
 XMLHttpRequestObject1.open("GET", dataSource);
 XMLHttpRequestObject1.onreadystatechange = function()
 {
 if (XMLHttpRequestObject1.readyState == 4 &&
 XMLHttpRequestObject1.status == 200) {
 obj.innerHTML = XMLHttpRequestObject1.responseText;
 }
}
XMLHttpRequestObject1.send(null);
}
}
function getData2(dataSource, divID)
{
if(XMLHttpRequestObject2) {
var obj = document.getElementById(divID);
XMLHttpRequestObject2.open("GET", dataSource);
XMLHttpRequestObject2.onreadystatechange = function()
{
if (XMLHttpRequestObject2.readyState == 4 &&
XMLHttpRequestObject2.status == 200) {
obj.innerHTML = XMLHttpRequestObject2.responseText;
}
}
XMLHttpRequestObject2.send(null);
}
}
<body>
<h1>Using Two XMLHttpRequest Objects</h1>

Page 7 of 16

<form>
 <input type = "button" value = "Fetch message 1" onclick =
"getData1('dataresponder.php?data=1', 'targetDiv')">
 <input type = "button" value = "Fetch message 2" onclick =
"getData2('dataresponder.php?data=2', 'targetDiv')">
</form>
<div id="targetDiv">
 <p> </p>
</div>
</body>
</html>

Q6) How to handle multiple XMLHTTPRequest objects in the same page using array

<html>

 <head>

 <title>An Ajax example</title>

 <script language = "javascript">

 var index = 0;

 var XMLHttpRequestObjects = new Array();

 function getData1(dataSource, divID)

 {

 if (window.XMLHttpRequest) {

 XMLHttpRequestObjects.push(new XMLHttpRequest());

 } else if (window.ActiveXObject) {

 XMLHttpRequestObjects.push(new

ActiveXObject("Microsoft.XMLHTTP"));

 }

 index = XMLHttpRequestObjects.length - 1;

 if(XMLHttpRequestObjects[index]) {

 XMLHttpRequestObjects[index].open("GET", dataSource);

 var obj = document.getElementById(divID);

 XMLHttpRequestObjects[index].onreadystatechange =

function()

 {

 if (XMLHttpRequestObjects[index].readyState == 4

&&

 XMLHttpRequestObjects[index].status == 200)

{

 obj.innerHTML =

XMLHttpRequestObjects[index].responseText;

 }

 }

 XMLHttpRequestObjects[index].send(null);

 }

 }

 function getData2(dataSource, divID)

 {

 if (window.XMLHttpRequest) {

 XMLHttpRequestObjects.push(new XMLHttpRequest());

 } else if (window.ActiveXObject) {

Page 8 of 16

 XMLHttpRequestObjects.push(new

ActiveXObject("Microsoft.XMLHTTP"));

 }

 index = XMLHttpRequestObjects.length - 1;

 if(XMLHttpRequestObjects[index]) {

 XMLHttpRequestObjects[index].open("GET", dataSource);

 var obj = document.getElementById(divID);

 XMLHttpRequestObjects[index].onreadystatechange =

function()

 {

 if (XMLHttpRequestObjects[index].readyState == 4

&&

 XMLHttpRequestObjects[index].status == 200)

{

 obj.innerHTML =

XMLHttpRequestObjects[index].responseText;

 }

 }

 XMLHttpRequestObjects[index].send(null);

 }

 }

 </script>

 </head>

 <body>

 <H1>An Ajax example</H1>

 <form>

 <input type = "button" value = "Fetch the first message"

 onclick = "getData1('dataresponder.php?data=1', 'targetDiv')">

 <input type = "button" value = "Fetch the second message"

 onclick = "getData2('dataresponder.php?data=2', 'targetDiv')">

 </form>

 <div id="targetDiv">

 <p>The fetched message will appear here.</p>

 </div>

 </body>

</html>

dataresponder.php
<?php
 if ($_GET["data"] == "1") {
 echo 'The server got a value of 1';
 }
 if ($_GET["data"] == "2") {
 echo 'The server got a value of 2';
 }
?>

Q7) Explain the pattern of predictive fetch using Ajax

In a traditional web solution, the application has no idea what is to come next. A page is presented
with any number of links, each one leading to a different part of the site. This may be termed “fetch on
demand,” where the user, through his or her actions, tells the server exactly what data should be
retrieved. While this paradigm has defined the Web since its inception, it has the unfortunate side

Page 9 of 16

effect of forcing the start-and-stop model of user interaction upon the user. The Predictive Fetch
pattern is a relatively simple idea that can be somewhat difficult to implement: the Ajax application
guesses what the user is going to do next and retrieves the appropriate data. In a perfect world, it
would be wonderful to always know what the user is going to do and make sure that the next data is
readily available when needed.

 In reality, however, determining future user action is just a guessing game depending on your
intentions There are simple use cases where predicting user actions is somewhat easier. Suppose that
you are reading an online article that is separated into three pages. It is logical to assume that if you
are interested in reading the first page, you’re also interested in reading the second and third page. So,
if the first page has been loaded for a few seconds (which can easily be determined by using a
timeout), it is probably safe to download the second page in the background. Likewise, if the second
page has been loaded for a few seconds, it is logical to assume that the reader will continue on to the
third page. As this extra data is being loaded and cached on the client, the reader continues to read
and barely even notices that the next page comes up almost instantaneously after clicking the Next
Page link. The Google Maps is another real world example for predictive fetch pattern. It predicts the
nearby places when we search a particular destination.
ArticleExample.php contains code for displaying an article online:
<?php
$page = 1;
$dataOnly = false;
if (isset($_GET[“page”])) {
$page = (int) $_GET[“page”];
}
if (isset($_GET[“dataonly”]) && $_GET[“dataonly”] == “true”) {
$dataOnly = true;
}
if (!$dataOnly) {
?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Article Example</title>
<script type=”text/javascript” src=”zxml.js”></script>
<script type=”text/javascript” src=”Article.js”></script>
<link rel=”stylesheet” type=”text/css” href=”Article.css” />
</head>
<body>
<h1>Article Title</h1>
<div id=”divLoadArea” style=”display:none”></div>
<?php
$output = “<p>Page “;
for ($i=1; $i < 4; $i++) {
$output .= “<a href=\”ArticleExample.php?page=$i\” id=\”aPage$i\””;
if ($i==$page) {
$output .= “class=\”current\””;
}
$output .= “>$i “;
}
echo $output;
}
if ($page==1) {
?>

Page 10 of 16

<div id=”divPage1”><!-- contents of page 1 --></div>
<?php
} else if ($page == 2) {
?>
<div id=”divPage2”><!-- contents of page 2 --></div>
<?php
} else if ($page == 3) {
?>
<div id=”divPage3”><!-- contents of page 3 --></div>
<?php
}
if (!$dataOnly) {
?>
</body>
</html>
<?php
}
?>

Q8) Write a note on submission throttling

Using Submission Throttling, you buffer the data to be sent to the server on the client and then send the
data at predetermined times. The venerable Google Suggest feature does this brilliantly. It doesn’t send a
request after each character is typed. Instead, it waits for a certain amount of time and sends all the text
currently in the textbox. The delay from typing to sending has been fine-tuned to the point that it doesn’t
seem like much of a delay at all. Submission Throttling, in part, gives Google Suggest its speed. Submission
Throttling typically begins either when the web site or application first loads or because of a specific user
action. Then, a client-side function is called to begin the buffering of data. Every so often, the user’s status
is checked to see if he or she is idle (doing so prevents any interference with the user interface). If the user
is still active, data continues to be collected. When the user is idle, which is to say he or she is not
performing an action, it’s time to decide whether to send the data. This determination varies depending on
your use case; you may want to send data only when it reaches a certain size, or you may want to send it
every time the user is idle. After the data is sent, the application typically continues to gather data until
either a server response or some user action signals to stop the data collection.

Page 11 of 16

Q9) With example explain pattern of periodic refresh and fallback pattern in Ajax

In a traditional web solution, the application has no idea what is to come next. A page is presented
with any number of links, each one leading to a different part of the site. This may be termed “fetch on
demand,” where the user, through his or her actions, tells the server exactly what data should be
retrieved. While this paradigm has defined the Web since its inception, it has the unfortunate side
effect of forcing the start-and-stop model of user interaction upon the user. The Predictive Fetch
pattern is a relatively simple idea that can be somewhat difficult to implement: the Ajax application
guesses what the user is going to do next and retrieves the appropriate data. In a perfect world, it
would be wonderful to always know what the user is going to do and make sure that the next data is
readily available when needed.

 In reality, however, determining future user action is just a guessing game depending on your
intentions There are simple use cases where predicting user actions is somewhat easier. Suppose that
you are reading an online article that is separated into three pages. It is logical to assume that if you
are interested in reading the first page, you’re also interested in reading the second and third page. So,
if the first page has been loaded for a few seconds (which can easily be determined by using a

Page 12 of 16

timeout), it is probably safe to download the second page in the background. Likewise, if the second
page has been loaded for a few seconds, it is logical to assume that the reader will continue on to the
third page. As this extra data is being loaded and cached on the client, the reader continues to read
and barely even notices that the next page comes up almost instantaneously after clicking the Next
Page link. The Google Maps is another real world example for predictive fetch pattern. It predicts the
nearby places when we search a particular destination.
ArticleExample.php contains code for displaying an article online:
<?php
$page = 1;
$dataOnly = false;
if (isset($_GET[“page”])) {
$page = (int) $_GET[“page”];
}
if (isset($_GET[“dataonly”]) && $_GET[“dataonly”] == “true”) {
$dataOnly = true;
}
if (!$dataOnly) {
?>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>Article Example</title>
<script type=”text/javascript” src=”zxml.js”></script>
<script type=”text/javascript” src=”Article.js”></script>
<link rel=”stylesheet” type=”text/css” href=”Article.css” />
</head>
<body>
<h1>Article Title</h1>
<div id=”divLoadArea” style=”display:none”></div>
<?php
$output = “<p>Page “;
for ($i=1; $i < 4; $i++) {
$output .= “<a href=\”ArticleExample.php?page=$i\” id=\”aPage$i\””;
if ($i==$page) {
$output .= “class=\”current\””;
}
$output .= “>$i “;
}
echo $output;
}
if ($page==1) {
?>
<div id=”divPage1”><!-- contents of page 1 --></div>
<?php
} else if ($page == 2) {
?>
<div id=”divPage2”><!-- contents of page 2 --></div>
<?php
} else if ($page == 3) {
?>
<div id=”divPage3”><!-- contents of page 3 --></div>
<?php
}

Page 13 of 16

if (!$dataOnly) {
?>
</body>
</html>
<?php
}
?>

i) Fallback pattern
Cancel Pending Requests
If an error occurs on the server, meaning that a status of something other than 200 or 304
is returned, you need to decide what to do. Chances are that if a file is not found (404) or an
internal server error occurred (302), trying again in a few minutes isn’t going to help, since
both of these require an administrator to fix the problem. The simplest way to deal with
this situation is to simply cancel all pending requests. You can set a flag somewhere in your
code that says, “don’t send any more requests.” This clearly has the highest impact on
solutions using the Periodic Refresh pattern.
The comment notification example can be modified to take this into account. This is a case
where the Ajax solution provides additional value to the user but is not the primary focus of
the page. If a request fails, there is no reason to alert the user; you can simply cancel any
future requests to prevent any further errors from occurring. To do so, you must add a
global variable that indicates whether requests are
enabled:
var oXHR = null;
var iInterval = 1000;
var iLastCommentId = -1;
var divNotification = null;
var blnRequestsEnabled = true;

Now, the blnRequestsEnabled variable must be checked before any request is made. This
can be accomplished by wrapping the body of the checkComments() function inside of an if
statement:

function checkComments() {
if (blnRequestsEnabled) {
if (!oXHR) {
oXHR = zXmlHttp.createRequest();
} else if (oXHR.readyState != 0) {
oXHR.abort();
}
oXHR.open(“get”, “CheckComments.php”, true);
oXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {
var aData = oXHR.responseText.split(“||”);
if (aData[0] != iLastCommentId) {
iLastCommentId = aData[0];
if (iLastCommentId != -1) {
showNotification(aData[1], aData[2]);
}
}
setTimeout(checkComments, iInterval);
}
}

Page 14 of 16

};
oXHR.send(null);
}
}

But that isn’t all that must be done; you must also detect the two different types of errors
that may occur: server errors that give status codes and a failure to reach the server (either
the server is down or the Internet connection has been lost).
To begin, wrap everything inside of the initial if statement inside a try...catch block.
Different browsers react at different times when a server can’t be reached, but they all
throw errors. Wrapping the entire request block in a try...catch ensures that you catch any
error that is thrown, at which point you can set blnRequestsEnabled to false. Next, for
server errors, you can also set blnRequestsEnabled to false whenever the status is not equal
to 200 or 304. This will have the same effect as if the server couldn’t be reached:

function checkComments() {
if (blnRequestsEnabled) {
try {
if (!oXHR) {
oXHR = zXmlHttp.createRequest();
} else if (oXHR.readyState != 0) {
oXHR.abort();
}
oXHR.open(“get”, “CheckComments.php”, true);
oXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {
var aData = oXHR.responseText.split(“||”);
if (aData[0] != iLastCommentId) {
if (iLastCommentId != -1) {
showNotification(aData[1], aData[2]);
}
iLastCommentId = aData[0];
}
setTimeout(checkComments, iInterval);
} else {
blnRequestsEnabled = false;
}
}
};
oXHR.send(null);
} catch (oException) {
blnRequestsEnabled = false;
}
}
}
Now, when either of the two error types occurs, an error will be thrown (either by the
browser or by you), and the blnRequestsEnabled variable will be set to false, effectively
canceling any further
requests if checkComments() is called again.

Try Again

Page 15 of 16

Another option when dealing with errors is to silently keep trying for either a specified
amount of time or a particular number of tries. Once again, unless the Ajax functionality is
key to the user’s experience,
there is no need to notify him or her about the failure. It is best to handle the problem
behind the scenes until it can be resolved.
To illustrate the Try Again pattern, consider the Multi-Stage Download example. In that
example, extra links were downloaded and displayed alongside the article. If an error
occurred during the request, an
error message would pop up in most browsers. The user would have no idea what the error
was or what caused it, so why bother displaying a message at all? Instead, it would make
much more sense to continue trying to download the information a few times before giving
up.
To track the number of failed attempts, a global variable is necessary:
var iFailed = 0;
The iFailed variable starts at 0 and is incremented every time a request fails. So, if iFailed is
ever greater than a specific number, you can just cancel the request because it is clearly not
going to work. If, for example, you want to try 10 times before canceling all pending
requests, you can do the following

function downloadLinks() {
var oXHR = zXmlHttp.createRequest();
if (iFailed < 10) {
try {
oXHR.open(“get”, “AdditionalLinks.txt”, true);
oXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {
var divAdditionalLinks =
document.getElementById(“divAdditionalLinks”);
divAdditionalLinks.innerHTML = oXHR.responseText;
divAdditionalLinks.style.display = “block”;
} else {
iFailed++;
downloadLinks();
}
}
}
oXHR.send(null);
} catch (oException) {
iFailed++;
downloadLinks();
}
}
}
This code is constructed similarly to the previous example. The try...catch block is used to
catch any errors that may occur during the communication, and a custom error is thrown
when the status isn’t 200 or 304. The main difference is that when an error is caught, the
iFailed variable is incremented and downloadLinks() is called again. As long as iFailed is
less than 10 (meaning it’s failed less than 10 times), another request will be fired off to
attempt the download.
In general, the Try Again pattern should be used only when the request is intended to occur
only once,

Page 16 of 16

as in a Multi-Stage Download. If you try to use this pattern with interval-driven requests,
such as Periodic Refresh, you could end up with an ever-increasing number of open
requests taking up memory

Q10) Illustrate how to implement multistage download

Multi-Stage Download is an Ajax pattern wherein only the most basic functionality is loaded
into a page initially. Upon completion, the page then begins to download other components
that should appear on the page. If the user should leave the page before all of the components
are downloaded, it’s of no consequence. If, however, the user stays on the page for an
extended period of time (perhaps reading an article), the extra functionality is loaded in the
background and available when the user is ready.
The major advantage here is that you, as the developer, get to decide what is downloaded and
at what point in time. This is a fairly new Ajax pattern and has been popularized by Microsoft’s
start.com. When you first visit start.com, it is a very simple page with a search box in the
middle. Behind the scenes, however, a series of requests is being fired off to fill in more content
on the page. Within a few seconds, the page jumps to life as content from several different
locations is pulled in and displayed.
Although nice, Multi-Stage Download does have a downside: the page must work in its simplest
form for browsers that don’t support Ajax technologies. This means that all the basic
functionality must work without any additional downloads. The typical way of dealing with this
problem is to provide graceful degradation, meaning that those browsers that support Ajax
technologies will get the more extensive interface while other browsers get a simple, bare-
bones interface. This is especially important if you are expecting search engines to crawl your
site; since these

