
Q1 a. Define HTTP.Explain the different Phases of HTTP.

Answer:

THE HYPERTEXT TRANSFER PROTOCOL

• HTTP contains two phases request phase and response phase.

• Each HTTP communication between browser and server consist of two part, a

header

and a body, header contain information about communication and body contain

data or

message of the communication if there is any.

Request Phase:

The general form of an HTTP request is as follows:

1. HTTP method Domain part of the URL HTTP version

2. Header fields

3. Blank line

4. Message body

The following is an example of the first line of an HTTP request:

GET /storefront.html HTTP/1.1

The format of a header field is the field name followed by a colon and the value of

the field.

There are four categories of header fields:

1. General: For general information, such as the date

2. Request: Included in request headers

3. Response: For response headers

4. Entity: Used in both request and response headers

A wildcard character, the asterisk (*), can be used to specify that part of a MIME

type can be

Anything.

The Host: host name request field gives the name of the host. The Host field is

required for

HTTP 1.1. The If-Modified-Since: date request field specifies that the requested file

should be

sent only if it has been modified since the given date. If the request has a body, the

length of

that body must be given with a Content-length field. The header of a request must

be followed

by a blank line, which is used to separate the header from the body of the request.

The Response Phase:

The general form of an HTTP response is as follows:

1. Status line

2. Response header fields

3. Blank line

4. Response body

The status line includes the HTTP version used, a three-digit status code for the

response, and a

short textual explanation of the status code.

For example, most responses begin with the following:

HTTP/1.1 200 OK

The status codes begin with 1, 2, 3, 4, or 5. The general meanings of the five

categories

specified by these first digits are shown in Table 1.2.

One of the more common status codes is one user never want to see: 404 Not

Found, which

means the requested file could not be found.

b. Briefly explain the following:

1.URL 2.MIME 3.web server 4.web browser

MULTIPURPOSE INTERNET MAIL EXTENSIONS

• MIME stands for Multipurpose Internet Mail Extension.

• The server system apart from sending the requested document, it will also send

MIME

information.

• The MIME information is used by web browser for rendering the document

properly.

• The format of MIME is: type/subtype

• Example: text/html , text/doc , image/jpeg , video/mpeg

• When the type is either text or image, the browser renders the document

without any

problem

• However, if the type is video or audio, it cannot render the document

• It has to take the help of other software like media player, win amp etc.,

• These softwares are called as helper applications or plugins

• These non-textual information are known as HYPER MEDIA

• Experimental document types are used when user wants to create a customized

information & make it available in the internet

• The format of experimental document type is: type/x-subtype

• Example: database/x-xbase , video/x-msvideo

• Along with creating customized information, the user should also create helper

applications.

• This helper application will be used for rendering the document by browser.

• The list of MIME specifications is stored in configuration file of web server.

UNIFORM RESOURCE LOCATORS

• Uniform Resource Locators (URLs) are used to identify different kinds of

resources on

Internet.

• If the web browser wants some document from web server, just giving domain

name is

not sufficient because domain name can only be used for locating the server.

• It does not have information about which document client needs. Therefore, URL

should

be provided.

• The general format of URL is: scheme: object-address

• Example: http: www.vtu.ac.in/results.php

• The scheme indicates protocols being used. (http, ftp, telnet...)

• In case of http, the full form of the object address of a URL is as follows:

//fully-qualified-domain-name/path-to-document

• URLs can never have embedded spaces

• It cannot use special characters like semicolons, ampersands and colons

• The path to the document for http protocol is a sequence of directory names and

a

filename, all separated by whatever special character the OS uses. (Forward or

backward slashes)

• The path in a URL can differ from a path to a file because a URL need not include

all

directories on the path

• A path that includes all directories along the way is called a complete path

• Example: http://www.gumboco.com/files/f99/storefront.html

• In most cases, the path to the document is relative to some base path that is

specified in

the configuration files of the server. Such paths are called partial paths.

• Example: http://www.gumboco.com/storefront.html

WEB SERVERS

Web servers are programs that provide documents to requesting browsers.

Example: Apache

http://www.gumboco.com/storefront.html

Web server operations:

• All the communications between a web client and a web server use the HTTP

• When a web server begins execution, it informs the OS under which it is running

& it

runs as a background process

• A web client or browser, opens a network connection to a web server, sends

information requests and possibly data to the server, receives information from the

server and closes the connection.

• The primary task of web server is to monitor a communication port on host

machine,

accept HTTP commands through that port and perform the operations specified by

the

commands.

• When the URL is received, it is translated into either a filename or a program

name

General characteristics of web server:

• The file structure of a web server has two separate directories

• The root of one of these is called document root which stores web documents

• The root of the other directory is called the server root which stores server and

its

support software’s

• The files stored directly in the document root are those available to clients

through top

level URLs

• The secondary areas from which documents can be served are called virtual

document

trees.

• Many servers can support more than one site on a computer, potentially

reducing the

cost of each site and making their maintenance more convenient. Such secondary

hosts

are called virtual hosts.

• Some servers can serve documents that are in the document root of other

machines on

the web; in this case they are called as proxy servers.

WEB BROWSERS

• Documents provided by servers on the Web are requested by browsers, which

are

programs running on client machines.

• They are called browsers because they allow the user to browse the resources

available

on servers.

• Mosaic was the first browser with a graphical user interface.

• A browser is a client on the Web because it initiates the communication with a

server,

which waits for a request from the client before doing anything.

• In the simplest case, a browser requests a static document from a server.

• The server locates the document among its servable documents and sends it to

the

browser, which displays it for the user.

• Sometimes a browser directly requests the execution of a program stored on the

server.

• The output of the program is then returned to the browser.

• Examples: Internet Explorer, Mozilla Firefox, Netscape Navigator, Google Chrome,

Opera

etc.

Q 2.a Discuss the basic structure of aHTML5 webpage.

Answer:

Standard XHTML Document Structure

• Every XHTML document must begin with an xml declaration element that simply

identifies the document as being one based on XML. This element includes an

attribute that specifies the version number 1.0.

• The xml declaration usually includes a second attribute, encoding, which specifies

the

encoding used for the document, utf-8

• Following is the xml declaration element, which should be the first line of every

XHTML document:

<?xml version = "1.0" encoding = "utf-8"?>

• Note that this declaration must begin in the first character position of the

document

file

• The xml declaration element is followed immediately by an SGML DOCTYPE

command which specifies the particular SGML document-type definition (DTD)

with

which the document complies, among other things.

• The following command states that the document in which it is included

complies

with XHTML 1.0

!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

• An XHTML document must include the four tags <html>, <head>, <title>, and

<body>.

• The <html> tag identifies the root element of the document So, XHTML

documents

always have an <html> tag immediately following the DOCTYPE command, and

they always end with the closing html tag, </html>.

• The html element includes an attribute, xmlns, that specifies the XHTML

namespace,

as shown in the following element:

<html xmlns = "http://www.w3.org/1999/xhtml">

• Although the xmlns attribute’s value looks like a URL, it does not specify a

document. It is just a name that happens to have the form of a URL.

• An XHTML document consists of two parts, named the head and the body.

• The <head> element contains the head part of the document, which provides

information about the document and does not provide the content of the

document.

• The body of a document provides the content of the document.

• The content of the title element is displayed by the browser at the top of its

display

window, usually in the browser window ’s title bar

b.List and explain any three from elements in HTML5 with a suitable example.

1.<video> Element:

 Explanation: The <video> element is used to embed videos on a web page. It

allows you to display video content and control playback using various

attributes and methods.

 Example:

<video width="320" height="240" controls>

 <source src="example.mp4" type="video/mp4">

 Your browser does not support the video tag.

</video>

In this example, a video is embedded with a specified width and height, and the

"controls" attribute provides playback controls like play, pause, and volume.

2.<canvas> Element:

 Explanation: The <canvas> element provides a drawing surface for creating

graphics and animations using JavaScript. You can draw shapes, images, and

more on the canvas.

 Example:

<canvas id="myCanvas" width="400" height="200"></canvas>

<script>

 var canvas = document.getElementById("myCanvas");

 var ctx = canvas.getContext("2d");

 ctx.fillStyle = "blue";

 ctx.fillRect(50, 50, 100, 100);

</script>

3.<input> Element (with type="email"):

 Explanation: The <input> element is used for various form controls, and

when used with the "type" attribute set to "email," it is used to input

email addresses. It provides built-in validation for email input.

 Example:

<label for="email">Email:</label>

<input type="email" id="email" name="email" required>

In this example, an email input field is created, and the "required" attribute

ensures that the user must enter a valid email address before submitting the form

c.Explain the following tags with examples

1. Heading tag 2.Hypertext link tag 3.Image tag

4. Audio and vedio tag 5. Progress tag

Ans:

Heading tag

In XHTML, there are six levels of headings, specified by the tags <h1>, <h2>, <h3>,

<h4>, <h5>, and <h6>, where <h1> specifies the highest-level heading. Headings

are

usually displayed in a boldface font whose default size depends on the number in

the

heading tag. On most browsers, <h1>, <h2>, and <h3> use font sizes that are larger

than that of the default size of text, <h4> uses the default size, and <h5> and <h6>

use smaller sizes. The heading tags always break the current line, so their content

always appears on a new line. Browsers usually insert some vertical space before

and after all headings

<html>

<head><title> Headings </title></head>

<body>

<h1> Heading 1 </h1>

<h2> Heading 2 </h2>

<h3> Heading 3 </h3>

<h4> Heading 4 </h4>

<h5> Heading 5 </h5>

<h6> Heading 6 </h6>

</body>

</html>

(ii) Hypertext link tag

The hypertext link tag in HTML is represented by the <a> element, which stands for

"anchor." It is one of the fundamental elements used to create hyperlinks on web

pages. Hyperlinks are clickable elements that allow users to navigate from one

webpage to another, view a different section of the same webpage, download files,

or link to other resources on the internet.

Here is the basic syntax of the <a> element:

Link Text

• href Attribute: The href attribute specifies the destination URL (Uniform

Resource Locator) where the link points. It can be a web address, a file path, or an

email address.

• Link Text: This is the visible text or content of the hyperlink that users see on

the webpage. Clicking on this text activates the link.

Examples:

1. Creating a Basic Web Link:

Visit Example Website

In this example, clicking "Visit Example Website" will take the user to the

https://www.example.com website.

2. Linking to a Different Section on the Same Page (Internal Link):

Go to Section

Here, #section-id refers to the ID attribute of the HTML element you want to link

to. For example, if you have a section with the ID attribute set to section-id, clicking

"Go to Section" will scroll the user to that specific section on the same page.

3. Linking to an Email Address:

Email Us

This creates a link that opens the user's default email client with the recipient

address set to example@example.com when clicked.

4. Linking to a File (e.g., PDF, Image):

Download PDF

Clicking "Download PDF" will prompt the user to download the document.pdf file

from the specified location on the server.

5. Linking to a Different Web Page in the Same Website:

Go to Page 2

This creates a link to another page within the same website. /page2.html

represents the relative path to the target page from the root directory of the

website.

The <a> element is incredibly versatile and is a fundamental building block for

navigation and interaction on the web. It allows for seamless connectivity between

different web resources, providing users with a smooth browsing experience.

(iii) Image tag

The image tag in HTML is represented by the element. It is used to embed

images in a web page. Images enhance the visual appeal of a webpage and are

essential for creating engaging and interactive content.

Here is the basic syntax of the element:

<img src="URL or file path" alt="Description of the image" width="width_value"

height="height_value">

• src Attribute: The src attribute specifies the source URL or file path of the

image. It can be a web address (URL) or a local file path pointing to the image file

on the server or device.

• alt Attribute (Optional): The alt attribute provides alternative text for the

image. It is displayed if the image cannot be loaded and is also used by screen

readers for accessibility. It should describe the content or purpose of the image.

• width and height Attributes (Optional): These attributes define the width and

height of the image in pixels. They are optional, and if not specified, the browser

will render the image in its original size.

Example:

In this example, the element displays an image named example.jpg. If the

image is not found, the text "Sample Image" will be displayed instead. Additionally,

the image will be displayed with a width of 300 pixels and a height of 200 pixels.

(iv) Audio and video tags

Certainly! Here are explanations and examples for three common HTML5

elements:

1. <header> Element:

The <header> element represents a container for introductory content or a set of

navigational links in a document. It typically contains headings, logos, and

navigation menus.

Example:

<!DOCTYPE html>

<html>

<head>

 <title>Website Header Example</title>

</head>

<body>

 <header>

 <h1>My Website</h1>

 <nav>

 Home

 About

 Services

 Contact

 </nav>

 </header>

 <h2>Main Content Goes Here</h2>

 <!-- Rest of the webpage content -->

</body>

</html>

In this example, the <header> element contains the website's title and a navigation

menu.

2. <section> Element:

The <section> element defines a section in a document. It is often used to group

related content together and can be thought of as a thematic grouping within a

webpage.

Example:

<!DOCTYPE html>

<html>

<head>

 <title>Section Example</title>

</head>

<body>

 <section>

 <h2>Section 1</h2>

 <p>This is the first section of the document.</p>

 </section>

 <section>

 <h2>Section 2</h2>

 <p>This is the second section of the document.</p>

 </section>

 <!-- More sections can be added here -->

</body>

</html>

In this example, two <section> elements group related content. Each section has a

heading and a paragraph of text.

3. <input> Element:

The <input> element is used to create interactive controls within web forms. It

allows the user to enter data, which can include various types such as text,

numbers, dates, checkboxes, and radio buttons.

Example:

<!DOCTYPE html>

<html>

<head>

 <title>Input Element Example</title>

</head>

<body>

 <h2>User Registration</h2>

 <form>

 <label for="username">Username:</label>

 <input type="text" id="username" name="username" required>

 <label for="email">Email:</label>

 <input type="email" id="email" name="email" required>

 <label for="password">Password:</label>

 <input type="password" id="password" name="password" required>

 <input type="submit" value="Register">

 </form>

</body>

</html>

In this example, the <input> element is used to create fields for entering a

username, email, and password within a user registration form. The type attribute

specifies the type of input field, and the required attribute ensures that the user

must fill out these fields before submitting the form.

5.Progress bar

The <progress> tag represents the completion progress of a task.

Tip: Always add the <label> tag for best accessibility practices!

 Use the <progress> tag in conjunction with JavaScript to display

the progress of a task.

 The <progress> tag is not suitable for representing a gauge (e.g.

disk space usage or relevance of a query result). To represent a

gauge, use the <meter> tag instead.

<!DOCTYPE html>

<html>

<body>

https://www.w3schools.com/tags/tag_label.asp
https://www.w3schools.com/tags/tag_meter.asp

<h1>The progress element</h1>

<label for="file">Downloading progress:</label>

<progress id="file" value="32" max="100"> 32% </progress>

</body>

</html>

3. what is CSS? Describe the different level of CSS style sheet and there precedence?

XHTML style sheets are called cascading style sheets because they can be defined

at three different levels to specify the style of a document. Lower level style sheets

can override higher level style sheets, so the style of the content of a tag is

determined, in effect, through a cascade of style-sheet applications..

CSS, which stands for Cascading Style Sheets, is a style sheet language used for

describing the presentation of a document written in a markup language such as

HTML. It controls the layout, appearance, and formatting of web pages, enabling

developers to separate content from design and layout. CSS allows developers to

create consistent styles across multiple pages, which can simplify the process of

managing and updating a website.

 CSS,

which stands for Cascading Style Sheets, is a language used for describing the

presentation of a document written in HTML or XML (including XML dialects like

SVG or XHTML). It defines how elements of a web page should be displayed, such

as layout, colors, fonts, and other design aspects. CSS separates the content of a

web page from its visual presentation, allowing web developers to control the

appearance of web pages efficiently.

CSS styles can be applied at different levels, and they have a specific order of

precedence when multiple styles conflict. These levels of CSS styles are:

1. **Inline Styles:** These styles are applied directly to individual HTML elements

using the `style` attribute. They have the highest specificity and will override any

other styles. For example:


   ```html 

   <p style="color: red; font-size: 16px;">This is a red and 16px text.</p> 

   ``` 


2. **Internal Styles (Embedded Styles):** These styles are defined within the

`<style>` element in the HTML document's `<head>` section. They apply to all

elements on that specific page. They have a medium level of specificity. For

example:


   ```html 

   <head> 

     <style> 

       p { 

         color: blue; 

         font-size: 18px; 

       } 

     </style> 

   </head> 

   <body> 

     <p>This is a blue and 18px text.</p> 

   </body> 

   ``` 


3. **External Styles (External Style Sheets):** These styles are defined in separate

.css files and linked to HTML documents. They have the lowest specificity and can

be applied to multiple web pages. When there are conflicting styles, the last rule

applied takes precedence. For example:

 CSS in a file named `styles.css`:

   ```css 

   p { 

     color: green; 

   } 

   ``` 


 HTML file linking to the external stylesheet:


   ```html 

   <head> 

     <link rel="stylesheet" type="text/css" href="styles.css"> 

   </head> 

   <body> 

     <p>This is a green text.</p> 

   </body> 

   ``` 


When there are conflicting styles between these levels, the order of precedence

(from highest to lowest) is as follows:

1. **Inline Styles**: These override all other styles.

2. **Internal Styles (Embedded Styles)**: These will override external styles but

can be overridden by inline styles.

3. **External Styles (External Style Sheets)**: These are the least specific and will

be overridden by both inline and internal styles.

In addition to these levels, CSS also employs the concept of specificity and the

order of declaration in the stylesheet to determine which styles should apply when

there are conflicts. Specificity is a complex topic that assigns values to different

selectors, allowing the browser to determine which style to use when multiple

styles conflict.

4 what is array in javascript ? explain various ways of creating arrays , mention

any 5 array method and explain their use?

An array in JavaScript is a data structure that allows you to store and organize

multiple values in a single variable. These values can be of any data type, including

numbers, strings, objects, functions, and even other arrays. JavaScript arrays are

ordered collections, which means each element has an index, starting from 0 for the

first element.

There are several ways to create arrays in JavaScript:

1. Array Literal Notation: The most common and straightforward way to

create an array is by using square brackets [] and specifying its elements

inside.

javascript

 let fruits = ["apple", "banana", "cherry"];

 Array Constructor: You can create an array using the Array constructor.

While this is less common than using literal notation, it's another valid way.

javascript

 let colors = new Array("red", "green", "blue");

 Array.from(): This method creates a new array from an iterable object or array-

like structure, such as the arguments object or a NodeList.

javascript

 let arrayFromStr = Array.from("hello");

// Result: ["h", "e", "l", "l", "o"]

 Array.of(): This method creates a new array with the provided elements,

regardless of their type. It's useful for creating arrays with a single value.

javascript

 let singleValueArray = Array.of(5); // Creates an

array with one element [5]

 Array with a Specific Length: You can create an array with a specific length

without initializing its elements. This is often used when you know how many

elements you want but don't yet have the actual values.

javascript

5. let emptyArray = new Array(3); // Creates an array
with a length of 3, but no initial values

6.

Now, let's discuss five common array methods and their uses:

1. push() and pop():

o push() adds one or more elements to the end of an array.

o pop() removes and returns the last element from an array.

javascript

 let numbers = [1, 2, 3];

numbers.push(4); // Adds 4 to the end of the array,

numbers is now [1, 2, 3, 4]

let lastNumber = numbers.pop(); // Removes and returns 4

 shift() and unshift():

 shift() removes and returns the first element from an array.

 unshift() adds one or more elements to the beginning of an array.

javascript

 let colors = ["red", "green", "blue"];

let removedColor = colors.shift(); // Removes and

returns "red"

colors.unshift("orange"); // Adds "orange" to the

beginning, colors is now ["orange", "green", "blue"]

 concat():

 concat() combines two or more arrays, creating a new array without

modifying the original arrays.

javascript

 let array1 = [1, 2];

let array2 = [3, 4];

let combinedArray = array1.concat(array2); // Creates

[1, 2, 3, 4]

 slice():

 slice() extracts a portion of an array into a new array. It takes two

arguments: the start index and the end index (exclusive).

javascript

 let fruits = ["apple", "banana", "cherry", "date"];

let slicedFruits = fruits.slice(1, 3); // Creates a new

array ["banana", "cherry"]

 forEach():

 forEach() iterates through the elements of an array and applies a provided

function to each element.

javascript

5. let numbers = [1, 2, 3];

6. numbers.forEach(function (number) {
7. console.log(number * 2); // Logs 2, 4, 6
8. });

9.

These are just a few of the many methods available for working with arrays in

JavaScript. Arrays are a fundamental data structure in the language, and

understanding how to create and manipulate them is essential for web development

and many other applications.

4 c discuss the following javascript method :

1 alert()

2 prompt()

3 confirm()

An array in JavaScript is a data structure that allows you to store and organize

multiple values in a single variable. These values can be of any data type, including

numbers, strings, objects, functions, and even other arrays. JavaScript arrays are

ordered collections, which means each element has an index, starting from 0 for the

first element.

There are several ways to create arrays in JavaScript:

1. Array Literal Notation: The most common and straightforward way to

create an array is by using square brackets [] and specifying its elements

inside.

javascript

 let fruits = ["apple", "banana", "cherry"];

 Array Constructor: You can create an array using the Array constructor.

While this is less common than using literal notation, it's another valid way.

javascript

 let colors = new Array("red", "green", "blue");

 Array.from(): This method creates a new array from an iterable object or array-

like structure, such as the arguments object or a NodeList.

javascript

 let arrayFromStr = Array.from("hello");

// Result: ["h", "e", "l", "l", "o"]

 Array.of(): This method creates a new array with the provided elements,

regardless of their type. It's useful for creating arrays with a single value.

javascript

 let singleValueArray = Array.of(5); // Creates an

array with one element [5]

 Array with a Specific Length: You can create an array with a specific length

without initializing its elements. This is often used when you know how many

elements you want but don't yet have the actual values.

javascript

5. let emptyArray = new Array(3); // Creates an array
with a length of 3, but no initial values

6.

Now, let's discuss five common array methods and their uses:

1. push() and pop():

o push() adds one or more elements to the end of an array.

o pop() removes and returns the last element from an array.

javascript

 let numbers = [1, 2, 3];

numbers.push(4); // Adds 4 to the end of the array,

numbers is now [1, 2, 3, 4]

let lastNumber = numbers.pop(); // Removes and returns 4

 shift() and unshift():

 shift() removes and returns the first element from an array.

 unshift() adds one or more elements to the beginning of an array.

javascript

 let colors = ["red", "green", "blue"];

let removedColor = colors.shift(); // Removes and

returns "red"

colors.unshift("orange"); // Adds "orange" to the

beginning, colors is now ["orange", "green", "blue"]

 concat():

 concat() combines two or more arrays, creating a new array without

modifying the original arrays.

javascript

 let array1 = [1, 2];

let array2 = [3, 4];

let combinedArray = array1.concat(array2); // Creates

[1, 2, 3, 4]

 slice():

 slice() extracts a portion of an array into a new array. It takes two

arguments: the start index and the end index (exclusive).

javascript

 let fruits = ["apple", "banana", "cherry", "date"];

let slicedFruits = fruits.slice(1, 3); // Creates a new

array ["banana", "cherry"]

 forEach():

 forEach() iterates through the elements of an array and applies a provided

function to each element.

javascript

5. let numbers = [1, 2, 3];
6. numbers.forEach(function (number) {
7. console.log(number * 2); // Logs 2, 4, 6
8. });

9.

These are just a few of the many methods available for working with arrays in

JavaScript. Arrays are a fundamental data structure in the language, and

understanding how to create and manipulate them is essential for web development

and many other applications.

5-A) What Is Bootstrap? Features, File Structure Of Bootstrap. How To

Include Bootstrap In Xhtml Structure?

I. Bootstrap introduction

A. Bootstrap is a popular open-source front-end framework that is used to

create responsive and mobile-first websites and web applications.

B. Mark Otto and Jacob Thornton developed the Bootstrap, at Twitter. In

August 2011, Bootstrap was released as an open source product, on GitHub.

C. It provides a collection of CSS and JavaScript components, such as grids,

forms, buttons, navigation bars, and more, which can be easily implemented

and customized to create responsive and visually appealing web interfaces.

D. With Bootstrap, developers can save time and effort by utilizing pre-designed

components, as well as the grid system for creating responsive layouts.

E. It also provides numerous styling options and utilities to enhance the overall

appearance and functionality of websites.

F. Bootstrap is widely used by web developers to streamline the web

development process and create consistent and visually appealing user

interfaces.

II. Bootstrap features

There are several benefits of using Bootstrap:

1. Responsive Design: Bootstrap is mobile-first, adapting to various screen sizes

for a consistent user experience on different devices.

2. Time-Saving: It offers ready-made CSS and JavaScript components, saving

developers time by avoiding building everything from scratch.

3. Consistent Appearance: Achieve a professional design with predefined styles

and themes that can be customized to match your brand.

4. Cross-Browser Compatibility: Bootstrap functions smoothly across different

browsers, ensuring a consistent experience for all users.

5. Community and Support: Benefit from a large community of developers who

offer support and resources through forums and online platforms.

6. Accessibility: Bootstrap adheres to accessibility guidelines, making your

application usable for people with disabilities.

7. Continuous Updates: Regularly updated with new features, bug fixes, and

optimizations to keep your application current and efficient.

B. Discuss the following using a Bootstrap code snippet:

a) Table In Bootstrap

In Bootstrap, creating tables is a straightforward process.
Bootstrap provides classes and styles that allow you to
design and customize tables easily. Here are some notes on
using tables in Bootstrap:

I. Basic Table Structure:

To create a basic table in Bootstrap, you can use the
following structure:

html
Copy code
<table class="table">
 <thead>
 <tr>
 <th>Header 1</th>
 <th>Header 2</th>
 <th>Header 3</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Row 1, Column 1</td>
 <td>Row 1, Column 2</td>
 <td>Row 1, Column 3</td>
 </tr>
 <!-- Additional rows here -->
 </tbody>
</table>

II. Striped Tables:

To create striped tables for better readability, add the
table-striped class to the table element:

html
Copy code
<table class="table table-striped">

 <!-- Table content -->
</table>
III. Bordered Tables:

To add borders to the table and its cells, use the table-
bordered class:

html
Copy code
<table class="table table-bordered">
 <!-- Table content -->
</table>

IV. Hover Effect:

To highlight rows when hovering over them, apply the table-
hover class:

html
Copy code
<table class="table table-hover">
 <!-- Table content -->
</table>

V. Responsive Tables:

For tables that need to be horizontally scrollable on smaller
screens, use the table-responsive class:

html
Copy code
<div class="table-responsive">
 <table class="table">
 <!-- Table content -->
 </table>
</div>
VI. Contextual Classes:

You can apply contextual classes to table rows or cells to
indicate different states, such as success, info, warning, or
danger. Here's an example:

html
Copy code
<table class="table">
 <tbody>
 <tr class="table-success">
 <td>Success</td>
 </tr>
 <tr class="table-info">
 <td>Info</td>
 </tr>
 <tr class="table-warning">
 <td>Warning</td>

 </tr>
 <tr class="table-danger">
 <td>Danger</td>
 </tr>
 </tbody>
</table>
These are the basic techniques for creating and customizing
tables in Bootstrap. You can further style and format tables
as per your project's requirements by combining classes and
CSS rules.

b) images

 Bootstrap has an img class that allows users to set various properties for
images and display them responsively.

 The class enables images to be scaled according to the screen size while

making sure the images do not exceed the size of the parent class.

 The image class has various available properties, some of which are

demonstrated below:

Class Description
.img-rounded Adds rounded corners to an image (not available in IE8)
.img-circle Shapes the image to a circle (not available in IE8)
.img-thumbnail Shapes the image to a thumbnail
.img-responsive Makes an image responsive (will scale nicely to the parent

element)

c) button

1. .btn: This is the base class for creating buttons in Bootstrap. You can add this
class to any <button> or <a> element to create a button.

2. Button Styles:
 .btn-primary: Creates a button with a primary blue color.
 .btn-secondary: Creates a button with a secondary gray color.
 .btn-success: Creates a button with a success green color.
 .btn-danger: Creates a button with a danger red color.
 .btn-warning: Creates a button with a warning yellow color.
 .btn-info: Creates a button with an info teal color.
 .btn-light: Creates a button with a light gray color.
 .btn-dark: Creates a button with a dark gray color.
 .btn-link: Creates a button that looks like a link.

3. Button Sizes:
 .btn-sm: Creates a small-sized button.
 .btn-lg: Creates a large-sized button.

4. Block Level Buttons:

 .btn-block: Makes the button span the full width of its parent container.
5. Outline Buttons:

 .btn-outline-primary: Creates an outlined primary button.
 .btn-outline-secondary: Creates an outlined secondary button.
 You can use the corresponding outline classes with other styles as well

(e.g., .btn-outline-success, .btn-outline- danger).
6. Active and Disabled Buttons:

 .active: Adds the "active" state to a button.

 .disabled: Disables a button, preventing interaction.

d) Bootstrap Progress Bar:

A Bootstrap progress bar is a visual indicator that shows the progress of a

task or operation. It's commonly used to give users feedback on how much of

a process has been completed.

VII. Key Points:

1. Basic Progress Bar: Bootstrap provides a simple, colored progress bar that
can be customized according to your design.

2. Striped Progress Bar: You can add a striped pattern to the progress bar using
the .progress-bar-striped class.

3. Animated Progress Bar: To make the striped pattern animate, use the

.progress-bar-animated class in addition to .progress- bar-striped.

4. Width: The width of the progress bar is determined by the style attribute's
width property.

5. Color Classes: Bootstrap offers color classes like .bg-success, .bg-info, .bg-

warning, and .bg-danger to change the color of the progress bar.

Example:

6-A) List out the various types of forms in Bootstrap and provide a code

snippet.

1. Bootstrap Forms

Bootstrap Form Layouts

Bootstrap provides three types of form layouts:
 Vertical form (this is default)
 Horizontal form
 Inline form

Standard rules for all three form layouts:
 Wrap labels and form controls in <div class="form-group"> (needed for

optimum spacing)
 Add class .form-control to all textual <input>, <textarea>,

and <select> elements

I. Bootstrap Vertical Form (default)

Email:

Password:
Remember me

Submit
The following example creates a vertical form with two input fields, one checkbox,
and a submit button:

Example

<form action="/action_page.php">
 <div class="form-group">
 <label for="email">Email address:</label>
 <input type="email" class="form-control" id="email">

 </div>
 <div class="form-group">
 <label for="pwd">Password:</label>
 <input type="password" class="form-control" id="pwd">
 </div>
 <div class="checkbox">
 <label><input type="checkbox"> Remember me</label>

 </div>
 <button type="submit" class="btn btn-default">Submit</button>

</form>

II. Bootstrap Inline Form

Email:

Password:

 Remember me
 Submit
In an inline form, all of the elements are inline, left-aligned, and the labels are
alongside.

Note: This only applies to forms within viewports that are at least 768px wide!
Additional rule for an inline form:

 Add class .form-inline to the <form> element
The following example creates an inline form with two input fields, one checkbox,
and one submit button:

Example

<form class="form-inline" action="/action_page.php">
 <div class="form-group">
 <label for="email">Email address:</label>

 <input type="email" class="form-control" id="email">
 </div>
 <div class="form-group">
 <label for="pwd">Password:</label>

 <input type="password" class="form-control" id="pwd">
 </div>
 <div class="checkbox">
 <label><input type="checkbox"> Remember me</label>

 </div>
 <button type="submit" class="btn btn-default">Submit</button>
</form>

III. Bootstrap Horizontal Form

Email:

Password:

Remember me

Submit
A horizontal form means that the labels are aligned next to the input field
(horizontal) on large and medium screens. On small screens (767px and below), it
will transform to a vertical form (labels are placed on top of each input).
Additional rules for a horizontal form:

 Add class .form-horizontal to the <form> element
 Add class .control-label to all <label> elements

Tip: Use Bootstrap's predefined grid classes to align labels and groups of form
controls in a horizontal layout.

The following example creates a horizontal form with two input fields, one
checkbox, and one submit button.

Example

<form class="form-horizontal" action="/action_page.php">
 <div class="form-group">
 <label class="control-label col-sm-2" for="email">Email:</label>

 <div class="col-sm-10">
 <input type="email" class="form-control" id="email" placeholder="Enter
email">
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-sm-2" for="pwd">Password:</label>
 <div class="col-sm-10">

 <input type="password" class="form-control" id="pwd" placeholder="Enter
password">
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-10">

 <div class="checkbox">
 <label><input type="checkbox"> Remember me</label>

 </div>
 </div>
 </div>
 <div class="form-group">
 <div class="col-sm-offset-2 col-sm-10">
 <button type="submit" class="btn btn-default">Submit</button>
 </div>
 </div>

</form>

B-) Discuss briefly the Grid system of Bootstrap.

In bootstrap, the grid system is useful for building quick web page layouts that are

responsive to the different devices based on screen sizes. In bootstrap 4, the grid

system is built with a mobile-first flexbox, and it allows up to 12 columns across the

page.

The bootstrap grid system will use a series of containers, rows, and columns to

define the layout and to align the content appropriately based on the device. In the

grid system, you can add up to 12 columns and add as many rows as you like, and

the columns will re-arrange automatically based on the device screen size.

Using a bootstrap grid system, we can create a responsive web page layout by

defining the 12 columns individually or by grouping the columns to create wider

columns.

2. Bootstrap Grid Classes

Bootstrap 4 has included 5 predefined grid classes to scale the content depending

on the device or viewport size.

 .col-*

 .col-sm-*

 .col-md-*

https://www.tutlane.com/tutorial/bootstrap/bootstrap-containers

 .col-lg-*

 .col-xl-*

Here, the asterisk (*) is the span width of the column from 1 to 12. The following

table lists how the grid system classes will work across multiple devices.

Class Device Type Width

.col-* Extra Small <576px

.col-sm-* Small ≥576px

.col-md-* Medium ≥768px

.col-lg-* Large ≥992px

.col-xl-* Extra Large ≥1200px

3. Structure of Bootstrap Grid

To create responsive web page layouts using a bootstrap grid system, we need to

use rows and columns within the container or container-fluid like as shown below.

<div class="container">

 <div class="row">

 <div class="col-*-*"></div>

 <div class="col-*-*"></div>

 <div class="col-*-*"></div>

 </div>

</div>

https://www.tutlane.com/tutorial/bootstrap/bootstrap-containers#divbtcntrcls
https://www.tutlane.com/tutorial/bootstrap/bootstrap-containers#divbtcntfldcls

C-) Explain Bootstrap progress bars with a code snippet. Explain their use.

A progress bar can be used to show how far a user is in a process.

To create a default progress bar, add a .progress class to a

container element and add the .progress-bar class to its child

element. Use the CSS width property to set the width of the

progress bar:

Example
<div class="progress">
 <div class="progress-bar" style="width:70%"></div>
</div>

I. Progress Bar Height

The height of the progress bar is 1rem (usually 16px) by default.

Use the CSS height property to change it:

Example
<div class="progress" style="height:20px">
 <div class="progress-bar" style="width:40%;"></div>
</div>

II. Progress Bar Labels

Add text inside the progress bar to show the visible percentage:

70%

Example
<div class="progress">
 <div class="progress-bar" style="width:70%">70%</div>
</div>
III. Colored Progress Bars

By default, the progress bar is blue (primary). Use any of the

contextual background classes to change its color:

Example
<!-- Blue -->
<div class="progress">
 <div class="progress-bar" style="width:10%"></div>
</div>

<!-- Green -->
<div class="progress">
 <div class="progress-bar bg-
success" style="width:20%"></div>
</div>

<!-- Turquoise -->
<div class="progress">
 <div class="progress-bar bg-info" style="width:30%"></div>
</div>

<!-- Orange -->
<div class="progress">
 <div class="progress-bar bg-
warning" style="width:40%"></div>
</div>

<!-- Red -->
<div class="progress">
 <div class="progress-bar bg-
danger" style="width:50%"></div>
</div>

<!-- White -->
<div class="progress border">
 <div class="progress-bar bg-white" style="width:60%"></div>
</div>

<!-- Grey -->
<div class="progress">
 <div class="progress-bar bg-
secondary" style="width:70%"></div>

</div>

<!-- Light Grey -->
<div class="progress border">
 <div class="progress-bar bg-light" style="width:80%"></div>
</div>

<!-- Dark Grey -->
<div class="progress">
 <div class="progress-bar bg-dark" style="width:90%"></div>
</div>
IV. Striped Progress Bars

Use the .progress-bar-striped class to add stripes to the

progress bars:

Example
<div class="progress">
 <div class="progress-bar progress-bar-
striped" style="width:40%"></div>
</div>

V. Animated Progress Bar

Add the .progress-bar-animated class to animate the progress

bar:

VI. Example

<div class="progress-bar progress-bar-striped progress-bar-
animated" style="width:40%"></div>

VII. Multiple Progress Bars

Progress bars can also be stacked:

Example
<div class="progress">
 <div class="progress-bar bg-success" style="width:40%">

 Free Space
 </div>
 <div class="progress-bar bg-warning" style="width:10%">
 Warning
 </div>
 <div class="progress-bar bg-danger" style="width:20%">
 Danger
 </div>
</div>

Q7 a. What is Querry? What are the advantages of jQuerry? Explain the syntax of

Querry script with a suitable example.

Answer:-

• jQuery is a JavaScript library designed to simplify HTML DOM tree traversal and

manipulation, as

well as event handling, CSS animation, and Ajax.

• jQuery is a lightweight, "write less, do more", JavaScript library.

• Using raw JavaScript can result in dozens of lines of code.

• The creators of jQuery specifically created the library to make common tasks

trivial.

• The real power in this jQuery statement comes from the selector, an expression

for identifying

target elements on a page that allows us to easily identify and grab the elements

we need.

Advantages:-

 Using raw JavaScript can result in dozens of lines of code for each of these tasks.

 The creators of jQuery specifically created the library to make common tas ks

trivial. For

example, designers will use JavaScript to “zebra-stripe” tables— highlighting every

other row in

a table with a contrasting color—taking up to 10 lines of code or more. Here’s how

we

accomplish it using jQuery:

$("table tr:nth-child(even)").addClass("striped");

 jQuery statements to make your pages come alive.

 The real power in this jQuery statement comes from the selector, an expression

for identifying

target elements on a page that allows us to easily identify and grab the elements

we need

Example

<button type="button" id="testButton">Click Me</button>

<script type="text/javascript">

window.onload = function() {

document.getElementById('testButton').onclick = makeItRed;

};

function makeItRed() {

document.getElementById('xyz').style.color = 'red';

}

</script>

Q7 b. Develop JQuery programs to implement the following jQuerry effects:

(1) Show and hide ()

(2) fadein() and fadeout()

Answer:-

(1) Show and hide ()

<!DOCTYPE html>

<html>

<head>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></scri

pt>

 <script>

 $(document).ready(function(){

 $("#hide").click(function(){

 $("p").hide();

 });

 $("#show").click(function(){

 $("p").show();

 });

 });

 </script>

</head>

<body>

<p>If you click on the "Hide" button, I will disappear.</p>

<button id="hide">Hide</button>

<button id="show">Show</button>

</body>

</html>

(2) fadein() and fadeout()

<!DOCTYPE html>

<html>

<head>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>

 <script>

 $(document).ready(function(){

 $("#fadeout").click(function(){

 $("#div1").fadeOut();

 });

 $("#fadein").click(function(){

 $("#div1").fadeIn();

 });

 });

 </script>

 <style>

 #div1 {

 width: 150px;

 height: 150px;

 display: none;

 background-color: red;

 }

 </style>

</head>

<body>

<button id="fadeout">Fade out</button>

<button id="fadein">Fade in</button>

<div id="div1"></div>

</body>

</html>

Q8. a. What is JQuery HTML? What are the methods used for DOM

manipulation? Develop a Query program to get attribute values.

Answer:-

jQuery is an open source JavaScript library that simplifies the interactions

between an HTML/CSS document, or more precisely the Document Object Model

(DOM), and JavaScript.

Elaborating the terms, jQuery simplifies HTML document traversing and

manipulation, browser event handling, DOM animations, Ajax interactions, and

cross-browser JavaScript development.

We can create DOM elements on the fly by passing the $() function a string that

contains the HTML

markup for those elements. For example, we can create a new paragraph element

as follows:

$("<p>Hi there!</p>")

But creating a disembodied DOM element (or hierarchy of elements) isn’t all that

useful; usually the

element hierarchy created by such a call is then operated on using one of jQuery’s

DOM manipulation

functions.

<html>

<head>

<title>Follow me！</title>

‹script type="text/javascript" src="

../scripts/jquery-1.2 js" >

</script>

<script type="text/javascript"›

Ready handler that creates HTML element

$ (function () {

sA<pvHE there！</p>1）.insextatter（"#Eo12omlE"）；

1) ;

</script>

</head>

‹body>

</body>

</html>

Existing element to be followed

<p id="followMe">Follow me!</p>

This example establishes an existing HTML paragraph element named followMe in

the document body.

In the script element within the <head> section, we establish a ready handler that

uses the following

statement to insert a newly created paragraph into the DOM tree after the existing

element:

$("<p>Hi there!</p>").insertAfter("#followMe");

b. What is an event? List the common events found in jQuery. Devalop a JQuery

program to implement mouse enter() JQuery event.

Answer:-

Events are associated with different HTML elements. e.g. the click event is

associated with button element; similarly keypress event is associated with text

box or text area element. AngularJS provides multiple events which are associated

with HTML control.

Click event

ng-click = "expression"

ng-click = "expression" defines a click event. When a button is clicked, an event

occurs, and evaluates the expression. The click event normally works on button.

Double Click event

ng-dblclick = "expression"

ng-click = "expression" defines a double click event. When a button is double

clicked, an event occurs, and evaluates the expression.

Double click event normally works on button.

Mouse move event

ng-mousemove = "expression"

ng-mousemove = "expression" defines a mouse move event. When the mouse

moves, an event occurs, and evaluates the expression.

Mouse move event normally works on div, body and specific area or element.

"ng-mousemove" defines an AngularS mouse move event.

"ng-mouseover" defines an AngularJS mouse over event.

"ng-mouseleave" defines an Angular)S mouse leave event.

"ng-keyup" defines an AngularIS key up event.

"ng-keydown" defines an AngularJS key down event.

<!DOCTYPE html>

<html>

<head>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>

 <script>

 $(document).ready(function(){

 $("#target").mouseenter(function(){

 $(this).css("background-color", "lightgray");

 });

 });

 </script>

 <style>

 #target {

 width: 200px;

 padding: 20px;

 text-align: center;

 background-color: lightblue;

 cursor: pointer;

 }

 </style>

</head>

<body>

<div id="target">

 Mouse over me

</div>

</body>

</html>

Q.9

 a. What is Angular JS? Explain the following Angular JS directives:

 (i) ng_app (ii) ng_model (iii) ng_bind

b. Write an Angular JS program to use expressions.

<!DOCTYPE html>

<html ng-app="myApp">

<head>

 <script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.8.2/angular.min.js"></script

>

</head>

<body>

 <div ng-controller="myCtrl">

 <p>Enter a number: <input type="number" ng-model="number"></p>

 <p>Result: {{ number * 2 }}</p>

 <p>{{ greeting }}</p>

 <p>{{ person.name }} is {{ person.age }} years old.</p>

 <li ng-repeat="item in items">{{ item }}

 <p>{{ stringExpression }}</p>

 </div>

 <script>

 var app = angular.module('myApp', []);

 app.controller('myCtrl', function($scope) {

 $scope.number = 0;

 $scope.greeting = "Hello, AngularJS!";

 $scope.person = {

 name: "John",

 age: 30

 };

 $scope.items = ["Apple", "Banana", "Cherry", "Date"];

 $scope.stringExpression = "This is a string expression.";

 });

 </script>

</body>

</html>

c. Briefly discuss the use of filter in Angular JS with an example.

<!DOCTYPE html>

<html ng-app="myApp">

<head>

 <script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.8.2/angular.min.js"></script

>

</head>

<body>

 <div ng-controller="myCtrl">

 <p>Original text: {{ originalText }}</p>

 <p>Uppercase: {{ originalText | uppercase }}</p>

 <p>Lowercase: {{ originalText | lowercase }}</p>

 <p>Number: {{ number | number:2 }}</p>

 <p>JSON: {{ object | json }}</p>

 <p>Formatted Currency: {{ currencyValue | currency }}</p>

 </div>

 <script>

 var app = angular.module('myApp', []);

 app.controller('myCtrl', function($scope) {

 $scope.originalText = 'Hello AngularJS';

 $scope.number = 123.45678;

 $scope.object = { name: 'John', age: 30 };

 $scope.currencyValue = 123.45;

 });

 </script>

</body>

</html>

Q.10

a. What is a Angular JS Service? Explain any three of them by using code snippet.

In Angular JS, a service is a singleton object that performs a specific task and can

be used throughout an application. It is used to organize and share code across

your app.

Certainly, here’s an example that demonstrates the use of the $http, $location,

$timeout service in a single AngularJS program:

<!DOCTYPE html>

<html ng-app="myApp">

<head>

 <script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.8.2/angular.min.js"></script

>

</head>

<body>

 <div ng-controller="myCtrl">

 <p>Current URL: {{ currentUrl }}</p>

 <li ng-repeat="user in users">

 {{ user.name }}

 <p ng-hide="hiddenMessage">{{ message }}</p>

 </div>

 <script>

 var app = angular.module('myApp', []);

 app.controller('myCtrl', function($scope, $http, $location, $timeout) {

 $http.get('https://jsonplaceholder.typicode.com/users')

 .then(function(response) {

 $scope.users = response.data;

 });

 $scope.currentUrl = $location.absUrl();

 $scope.message = 'This message will disappear in 3 seconds!';

 $timeout(function() {

 $scope.hiddenMessage = true;

 }, 3000);

 });

 </script>

</body>

</html>

b. Write an AngularJS program to demonstrate client-side form validation.

<!DOCTYPE html>

<html ng-app="myApp">

<head>

 <script

src="https://ajax.googleapis.com/ajax/libs/angularjs/1.8.2/angular.min.js"></script

>

</head>

<body>

 <div ng-controller="myCtrl">

 <form name="myForm" novalidate>

 <p>Username:</p>

 <input type="text" name="username" ng-model="user.username" required>

 <span style="color:red" ng-show="myForm.username.$touched &&

myForm.username.$invalid">

 Username is

required.

 <p>Email:</p>

 <input type="email" name="email" ng-model="user.email" required>

 <span style="color:red" ng-show="myForm.email.$touched &&

myForm.email.$invalid">

 Email is required.

 Invalid email address.

 <button ng-disabled="myForm.$invalid" ng-

click="submitForm()">Submit</button>

 </form>

 </div>

 <script>

 var app = angular.module('myApp', []);

 app.controller('myCtrl', function($scope) {

 $scope.user = {};

 $scope.submitForm = function() {

 alert('Form submitted successfully.');

 };

 });

 </script>

</body>

</html>

	a) Table In Bootstrap
	I. Basic Table Structure:
	II. Striped Tables:
	III. Bordered Tables:
	IV. Hover Effect:
	V. Responsive Tables:
	VI. Contextual Classes:
	b) images
	c) button
	d) Bootstrap Progress Bar:

	VII. Key Points:
	1. Bootstrap Forms
	Bootstrap Form Layouts
	I. Bootstrap Vertical Form (default)

	Example
	II. Bootstrap Inline Form

	Example (1)
	III. Bootstrap Horizontal Form

	Example (2)
	Example (3)
	I. Progress Bar Height

	Example (4)
	II. Progress Bar Labels

	Example (5)
	III. Colored Progress Bars

	Example (6)
	IV. Striped Progress Bars

	Example (7)
	V. Animated Progress Bar
	VI. Example
	VII. Multiple Progress Bars

	Example (8)

