

Q1a) Explain any six string functions in PHP

Q1b) Explain Cookies in PHP

 A cookie is a small object of information that consists of a name and a textual value. A

cookie is created by some software system on the server.

 The header part of an HTTP communication can include cookies. So, every request sent

from a browser to a server, and every response from a server to a browser, can include

one or more cookies.

 At the time it is created, a cookie is assigned a lifetime. When the time a cookie has

existed reaches its associated lifetime, the cookie is deleted from the browser's host

machine.

 Cookie is set in PHP with setcookie function

 First parameter is cookie’s name given as a string. The second, if present, is the new

value for the cookie, also a string. If the value is absent, setcookie undefines the cookie.

 The third parameter, when present, is the expiration time in seconds for the cookie, given

as an integer.

 The default value for the expiration time is zero, which specifies that the cookie is

destroyed at the end of the current session. When specified, the expiration time is often

given as the number of seconds in the UNIX epoch, which began on January 1, 1970. The

time function returns the current time in seconds. So, the cookie expiration time is given

as the value returned from time plus some number.

 For example,

setcookie("voted", "true", time() + 86400);

This call creates a cookie named "voted" whose value is "true" and whose lifetime is one day

(86,400 is the number of seconds in a day).

 To delete a cookie, use the setcookie() function with an expiration date in the past:
setcookie("voted", "true", time() - 86400);

 All cookies that arrive with a request are placed in the implicit $ COOKIES array, which

has the cookie names as keys and the cookie values as values.

 We can retrieve the value of the cookie using the global variable $_COOKIE
$_COOKIE[$cookie_name]

Eg. $_COOKIE["voted"]

Program

<html>

<head>

<title>Last Visit using Cookies</title>

</head>

<body bgcolor="#cCCFFCC" text="#003300">

<h1> Web Programming Lab</h1>

<p> Welcome to Web Programming Lab </p>

<hr />

<p style="color:blue; font-style: italic">

<?php

date_default_timezone_set('Asia/Calcutta');

//Calculate 60 days in the future

//seconds * minutes * hours * days + current time

// set expiry date to two months from now

$inTwoMonths = 60 * 60 * 24 * 60 + time();

setcookie('lastVisit', date("G:i - m/d/y"), $inTwoMonths);

if(isset($_COOKIE['lastVisit']))

{

$visit = $_COOKIE['lastVisit'];

echo "Last Visited on : ".$visit;

}

else

echo "You've got some old cookies!";

?>

</p>

</body>

</html>

Q1c) Construct a PHP program to read student data from an XML file and store it into MYSQL. Retrieve

and display the details using search option.

8.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<student_info>

<student>

<usn>1CR17MCA01</usn>

<name>Ajay</name>

</student>

<student>

<usn>1CR17MCA02</usn>

<name>Akshatha</name>

</student>

<student>

<usn>1CR17MCA58</usn>

<name>Piyush</name>

</student>

<student>

<usn>1CR17MCA59</usn>

<name>Taj</name>

</student>

</student_info>

8.php

<html>

 <body>

 <form name="form1" method="post" action="8.php">

 Enter Name <input type="text" name="stname">

 <input type="submit" name="submit" value="search">

 </form>

 </body>

</html>

<?php

$con = mysql_connect("localhost","root","");

if (!$con)

{

 die('Could not connect: ' . mysql_error());

}

mysql_select_db("web1", $con);

$lib = simplexml_load_file("7.xml");

$i = "delete from student";

$result = mysql_query($i);

foreach($lib as $stu)

{

 $usn= $stu->usn;

 $name=$stu->name;

 $i="insert into student(usn,name) values('$usn','$name')";

 mysql_query($i);

}

if(($_SERVER["REQUEST_METHOD"]=="POST")||($_SERVER["REQUEST_METH

OD"]=="post"))

{

$stname = $_POST["stname"];

$result = mysql_query("SELECT * from student where name LIKE '%".$stname."%'");

echo "<table border='1'><tr><th>USN</th><th>Name</th></tr>";

while($row = mysql_fetch_array($result))

{

 echo "<tr><td>" . $row['usn'] . "</td><td>" . $row['name'] . "</td></tr>";

}

echo "</table>";

}

?>

Output:-

Q2a) Explain logical internal structure of arrays in PHP

Q2b) Illustrate session tracking in PHP

In many cases, information about a session is needed only during the session. Also, the needed

information about a client is nothing more than a unique identifier for the session, which is

commonly used in shopping cart applications. For these cases, a different process, named session

tracking, can be used.

 Rather than using one or more cookies, a single session array can be used to store

information about the previous requests of a client during a session.

 In particular, session arrays often store a unique session ID for a session.

 One significant way that session arrays differ from cookies is that they can be stored on

the server, whereas cookies are stored on the client.

 In PHP, a session ID is an internal value that identifies a session. Session IDs need not be

known or handled in any way by PHP scripts.

 PHP is made aware that a script is interested in session tracking by calling the session

start function, which takes no parameters. The first call to session start in a session causes

a session ID to be created and recorded.

 On subsequent calls to session_start in the same session, the function retrieves the

$_SESSION array, which stores any session variables and their values that were

registered in previously executed scripts in this session.

 Session key/value pairs are created or changed by assignments to the $ SESSION array.

 They can be destroyed with the unset operator.

 Consider the following example: session_start();

if (!IsSet($_SESSION["page_number")))

$ SESSIONppage_number") = 1;

$page_num = $_SESSION["page_number"];

print("You have now visited $page_num page(s)
");

$ SESSIONppage number")++;

 If this is not the first document visited that calls session start and sets the page_number

session variable, this script will produce the specified line with the last set value of

$_SESSION ["page_number") .

 If no document that was previously visited in this session set page_number, this script

sets page_number to 1, produces the line ‘You have now visited 1 page(s)‘, and

increments page_number

Program

<html>

<head>

<title>Page Views </title>

</head>

<body bgcolor="#cCCFFCC" text="#003300">

<h1> Web Programming Lab</h1>

<p> Welcome to Web Programming Lab </p>

<hr />

<p style="color:blue; font-style: italic">

<?php

session_start();

//session_register("count");

$_SESSION["count"];

if(!isset($_SESSION["count"]))

{

$_SESSION["count"] = 0;

echo "Counter initialized...
";

}

else { $_SESSION["count"]++; }

echo "Number of Page Views : $_SESSION[count]</p>";

?>

<p>Reload this page to increment</p>

</body>

</html>

C) Build a PHP form to display text base, table, radio button, submit button, and clear button using XML

<!DOCTYPE HTML>

<html>

<head>

</head>

<body>

<?php

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 $name = test_input($_POST["name"]);

 $email = test_input($_POST["email"]);

 $website = test_input($_POST["website"]);

 $comment = test_input($_POST["comment"]);

 $gender = test_input($_POST["gender"]);

 echo "<h2>Your Input:</h2>";

 echo $name;

 echo "
";

 echo $email;

 echo "
";

 echo $website;

 echo "
";

 echo $comment;

 echo "
";

 echo $gender;

}

?>

<h2>PHP Form Validation Example</h2>

<p>* required field</p>

<table>

<form method="post" action="<?php echo htmlspecialchars($_SERVER["PHP_SELF"]);?>">

 <tr>

 <td>Name: </td><td><input type="text" name="name" value=""></td>

 </tr>

 <tr>

 <td>E-mail: </td><td><input type="text" name="email" value=""></td>

 </tr>

 <tr>

 <td> Website: </td><td><input type="text" name="website" value=""></td>

 </tr>

<tr>

 <td> Comment: </td><td><textarea name="comment" rows="5" cols="40"></textarea></td>

 </tr>

 <tr>

 <td> Gender: </td><td>

 <input type="radio" name="gender" <?php if (isset($gender) && $gender=="female") echo

"checked";?> value="female">Female

 <input type="radio" name="gender" <?php if (isset($gender) && $gender=="male") echo "checked";?>

value="male">Male

 <input type="radio" name="gender" <?php if (isset($gender) && $gender=="other") echo "checked";?>

value="other">Other

 </td></tr>

 <tr><td colspan="2"><input type="submit" name="submit" value="Submit"> </td></tr>

</form>

</body>

</html>

Q3a) List and explain different string methods in Ruby

Q3b) develop a program for generating dynamic document in Ruby on rails

Q4) Demonstrate layouts in Rails

First, the user needs to define a layout template, and after that, we have to let the controller know that

we have created a template layout and can use it. Let's make the template first.

Create and add a new file named standard.html.erb to app/views/layouts. The controllers may know

which file you are using as a template by the file's name, so using proper names is advisable.

To the new standard.html.erb file add the following code and save your changes:

<!DOCTYPE HTML >

<html >

 <head>

 <meta content = "text/html; charset = iso-8859-1" / http-equiv = "Content-Type" >

 <meta http-equiv = "Content-Language" content = "en-us" />

 <title>Library Info System</title>

 <%= stylesheet_link_tag "style" %>

 </head>

 <body id = "library">

 <div id = "container">

 <div id = "header">

 <h1>Library Info System</h1>

 <h3>Library powered by Ruby on Rails</h3>

 </div>

 <div id = "content">

 <%= yield -%>

 </div>

 <div id = "sidebar"></div>

 </div>

 </body>

</html>

Explanation

The above code’s elements were just standard HTML elements. But there are two different lines in the

above code stylesheet_link_tag is a helper method that outputs a stylesheet <link>. In this example, we

are linking style.css style sheets.

You must be wondering why we have written yield in the above code. The yield command has its

advantage whenever there is a yield command, and then rails know that it should put HTML.erb for the

method called here.

In the book_controller.rb, add the following code from the second line.

class BookController < ApplicationController

layout 'standard'

def list

@books = Book.all

end

The above code uses the layout available in the standard.html.erb file.

4b) Develop a program in ruby to read list of names from the keyboard, convert them all to uppercase

letters and place in an array and display in a sorted format

print "Enter names seperated by space"

a = gets.chomp;

array = a.split(' ');

puts 'Names enterd by you : ' +array.to_s

uparray=array.map(&:upcase);

sort_ar=uparray.sort

puts 'Names converted to uppercase and sorted : ' +sort_ar.to_s

Q5a) Discuss the difference between traditional web application and Ajax model

 Instead of the traditional web application model where the browser itself is responsible for

initiating requests to, and processing requests from, the web server, the Ajax model provides an

intermediate layer called an Ajax engine—to handle this communication.

 An Ajax engine is really just a JavaScript object or function that is called whenever information

needs to be requested from the server.

 Instead of the traditional model of providing a link to another resource (such as another web

page), each link makes a call to the Ajax engine, which schedules and executes the request. The

request is done asynchronously, meaning that code execution doesn’t wait for a response

before continuing.

 The server—which traditionally would serve up HTML, images, CSS, or JavaScript—is configured

to return data that the Ajax engine can use. This data can be plain text, XML, or any other data

format that you may need. The only requirement is that the Ajax engine can understand and

interpret the data

 When the Ajax engine receives the server response, it goes into action, often parsing the data

and making several changes to the user interface based on the information it was provided.

Because this process involves transferring less information than the traditional web application

model, user interface updates are faster, and the user is able to do his or her work more quickly.

Q5b) Describe the different HTTP status code with their message

Q5 c) Build a program to send data to the server using GET method in Ajax

<html>
 <head>
 <title>An Ajax example</title>
 <script language = "javascript">
 var ajaxobj = false;
 if (window.XMLHttpRequest) {
 ajaxobj = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 ajaxobj = new ActiveXObject("Microsoft.XMLHTTP");
 }
 function getData(dataSource, divID){
 if(ajaxobj) {
 var obj = document.getElementById(divID);
 ajaxobj.open("GET", dataSource);
 ajaxobj.onreadystatechange = function()

 {
 if (ajaxobj.readyState == 4 &&
 ajaxobj.status == 200) {
 obj.innerHTML = ajaxobj.responseText;
 }
 }

 ajaxobj.send(null);
 }
 }
 </script>
 </head>
 <body>
 <H1>An Ajax example</H1>
 <form>
 <input type = "button" value = "Fetch the first message"
 onclick = "getData('dataresponder.php?data=1', 'targetDiv')">
 <input type = "button" value = "Fetch the second message"
 onclick = "getData('dataresponder.php?data=2', 'targetDiv')">
 </form>
 <div id="targetDiv">
 <p>The fetched message will appear here.</p>
 </div>
 </body>
</html>

dataresponder.php
<?php
 if ($_GET["data"] == "1") {
 echo 'The server got a value of 1';
 }
 if ($_GET["data"] == "2") {
 echo 'The server got a value of 2';
 }
?>

Q6 a) Explain Technologies behind Ajax

 HTML/XHTML: Primary content representation languages

 CSS: Provides stylistic formatting to XHTML

 DOM: Dynamic updating of a loaded page

 XML: Data exchange format

 XSLT: Transforms XML into XHTML (styled by CSS)

 XMLHttp: Primary communication broker

 JavaScript: Scripting language used to program an Ajax engine

Q6b) Create Program to send data to server using POST method in Ajax

<html>
 <head>
 <title>An Ajax example</title>
 <script language = "javascript">
 var XMLHttpRequestObject = false;
 if (window.XMLHttpRequest) {
 XMLHttpRequestObject = new XMLHttpRequest();
 } else if (window.ActiveXObject) {
 XMLHttpRequestObject = new
ActiveXObject("Microsoft.XMLHTTP");
 }
 function getData(dataSource, divID, data){
 if(XMLHttpRequestObject) {
 var obj = document.getElementById(divID);
 XMLHttpRequestObject.open("POST", dataSource);
 XMLHttpRequestObject.setRequestHeader('Content-
Type', 'application/x-www-form-urlencoded');
 XMLHttpRequestObject.onreadystatechange =
function()
 {
 if (XMLHttpRequestObject.readyState == 4 &&
 XMLHttpRequestObject.status == 200) {
 obj.innerHTML =
XMLHttpRequestObject.responseText;
 }
 }

 XMLHttpRequestObject.send("data="+data);
 }
 }
 </script>
 </head>
 <body>
 <H1>An Ajax example</H1>
 <form>
 <input type = "button" value = "Fetch the first message"

 onclick = "getData('dataresponder.php','targetDiv',1)">
 <input type = "button" value = "Fetch the second message"
 onclick = "getData('dataresponder.php','targetDiv',2)">
 </form>
 <div id="targetDiv">
 <p>The fetched message will appear here.</p>
 </div>
 </body>
</html>

dataresponder.php
<?php
 if ($_GET["data"] == "1") {
 echo 'The server got a value of 1';
 }
 if ($_GET["data"] == "2") {
 echo 'The server got a value of 2';
 }
?>

Q6c) Explain the principles of Ajax

 Minimal traffic: Ajax applications should send and receive as little information as possible to

and from the server. In short, Ajax can minimize the amount of traffic between the client and

the server. Making sure that your Ajax application doesn’t send and receive unnecessary

information adds to its robustness.

 No surprises: Ajax applications typically introduce different user interaction models than

traditional web applications. As opposed to the web standard of click-and-wait, some Ajax

applications use other user interface paradigms such as drag-and-drop or double-clicking. No

matter what user interaction model you choose, be consistent so that the user knows what to

do next.

 Established conventions: Don’t waste time inventing new user interaction models that your

users will be unfamiliar with. Borrow heavily from traditional web applications and desktop

applications, so there is a minimal learning curve.

 No distractions: Avoid unnecessary and distracting page elements such as looping animations

and blinking page sections. Such gimmicks distract the user from what he or she is trying to

accomplish.

 Accessibility: Consider who your primary and secondary users will be and how they most likely

will access your Ajax application. Don’t program yourself into a corner so that an unexpected

new audience will be completely locked out. Will your users be using older browsers or special

software? Make sure you know ahead of time and plan for it.

 Avoid entire page downloads: All server communication after the initial page download should

be managed by the Ajax engine. Don’t ruin the user experience by downloading small amounts

of data in one place but reloading the entire page in others.

 User first: Design the Ajax application with the users in mind before anything else. Try to make

the common use cases easy to accomplish and don’t be caught up with how you’re going to fit in

advertising or cool effects.

Q7a) create a web page using array of XMLHTTP request object

<html>

 <head>

 <title>An Ajax example</title>

 <script language = "javascript">

 var index = 0;

 var XMLHttpRequestObjects = new Array();

 function getData1(dataSource, divID)

 {

 if (window.XMLHttpRequest) {

 XMLHttpRequestObjects.push(new XMLHttpRequest());

 } else if (window.ActiveXObject) {

 XMLHttpRequestObjects.push(new

ActiveXObject("Microsoft.XMLHTTP"));

 }

 index = XMLHttpRequestObjects.length - 1;

 if(XMLHttpRequestObjects[index]) {

 XMLHttpRequestObjects[index].open("GET",

dataSource);

 var obj = document.getElementById(divID);

 XMLHttpRequestObjects[index].onreadystatechange = function()

 {

 if

(XMLHttpRequestObjects[index].readyState == 4 &&

 XMLHttpRequestObjects[index].status == 200) {

 obj.innerHTML =

XMLHttpRequestObjects[index].responseText;

 }

 }

 XMLHttpRequestObjects[index].send(null);

 }

 }

 function getData2(dataSource, divID)

 {

 if (window.XMLHttpRequest) {

 XMLHttpRequestObjects.push(new XMLHttpRequest());

 } else if (window.ActiveXObject) {

 XMLHttpRequestObjects.push(new

ActiveXObject("Microsoft.XMLHTTP"));

 }

 index = XMLHttpRequestObjects.length - 1;

 if(XMLHttpRequestObjects[index]) {

 XMLHttpRequestObjects[index].open("GET",

dataSource);

 var obj = document.getElementById(divID);

 XMLHttpRequestObjects[index].onreadystatechange = function()

 {

 if

(XMLHttpRequestObjects[index].readyState == 4 &&

 XMLHttpRequestObjects[index].status == 200) {

 obj.innerHTML =

XMLHttpRequestObjects[index].responseText;

 }

 }

 XMLHttpRequestObjects[index].send(null);

 }

 }

 </script>

 </head>

 <body>

 <H1>An Ajax example</H1>

 <form>

 <input type = "button" value = "Fetch the first message"

 onclick = "getData1('dataresponder.php?data=1', 'targetDiv')">

 <input type = "button" value = "Fetch the second message"

 onclick = "getData2('dataresponder.php?data=2', 'targetDiv')">

 </form>

 <div id="targetDiv">

 <p>The fetched message will appear here.</p>

 </div>

 </body>

</html>

dataresponder.php
<?php
 if ($_GET["data"] == "1") {
 echo 'The server got a value of 1';
 }
 if ($_GET["data"] == "2") {
 echo 'The server got a value of 2';
 }
?>

Q7b) Build a program to cancel pending request using fallback pattern

Q7c) Describe predictive fetch pattern

In a traditional web solution, the application has no idea what is to come next. A page is
presented with any number of links, each one leading to a different part of the site. This
may be termed “fetch on demand,” where the user, through his or her actions, tells the
server exactly what data should be retrieved. While this paradigm has defined the Web
since its inception, it has the unfortunate side
effect of forcing the start-and-stop model of user interaction upon the user. The Predictive
Fetch pattern is a relatively simple idea that can be somewhat difficult to implement: the
Ajax application guesses what the user is going to do next and retrieves the appropriate
data. In a perfect world, it would be wonderful to always know what the user is going to do
and make sure that the next data is readily available when needed.

 In reality, however, determining future user action is just a guessing game depending on
your intentions There are simple use cases where predicting user actions is somewhat
easier. Suppose that you are reading an online article that is separated into three pages. It
is logical to assume that if you are interested in reading the first page, you’re also

interested in reading the second and third page. So, if the first page has been loaded for a
few seconds (which can easily be determined by using a timeout), it is probably safe to
download the second page in the background. Likewise, if the second page has been loaded
for a few seconds, it is logical to assume that the reader will continue on to the third page.
As this extra data is being loaded and cached on the client, the reader continues to read and
barely even notices that the next page comes up almost instantaneously after clicking the
Next Page link. The Google Maps is another real world example for predictive fetch pattern.
It predicts the nearby places when we search a particular destination.

Q8a) create a program for new comment notifies using periodic refresh

Q8b) Describe periodic refresh pattern

The Periodic Refresh design pattern describes the process of checking for new server information in

specific intervals. This approach, also called polling, requires the browser to keep track of when another

request to the server should take place. This pattern is used in a variety of different ways on the Web:

❑ ESPN uses Periodic Refresh to update its online scoreboards automatically. For example, the NFL

Scoreboard, located at http://sports.espn.go.com/nfl/scoreboard, shows up-tothe-minute scores and

drive charts for every NFL game being played at the time. Using XHR objects and a little bit of Flash, the

page repeatedly updates itself with new information.

❑ Gmail (http://gmail.google.com) uses Periodic Refresh to notify users when new mail has been

received. As you are reading an e-mail or performing other operations, Gmail repeatedly checks the

server to see if new mail has arrived. This is done without notification unless there is new mail, at which

point the number of new e-mails received is displayed in parentheses next to the Inbox menu item.

❑ XHTML Live Chat (www.plasticshore.com/projects/chat) uses Periodic Refresh to implement a chat

room using simple web technologies. The chat room text is updated automatically every few seconds by

checking the server for new information. If there is a new message, the page is updated to reflect it,

thus creating a traditional chat room experience.

Q8c) Build a program for page preloading using predictive fetch

Q9a) Explain fluid grid system with example

Q9b) Create a table using bootstrap table class

<table class="table table-bordered table-dark">
 <thead>
 <tr>
 <th scope="col">#</th>
 <th scope="col">First</th>
 <th scope="col">Last</th>
 <th scope="col">Handle</th>
 </tr>
 </thead>
 <tbody>
 <tr>

 <th scope="row">1</th>
 <td>Mark</td>
 <td>Otto</td>
 <td>@mdo</td>
 </tr>
 <tr>
 <th scope="row">2</th>
 <td>Jacob</td>
 <td>Thornton</td>
 <td>@fat</td>
 </tr>
 <tr>
 <th scope="row">3</th>
 <td colspan="2">Larry the Bird</td>
 <td>@twitter</td>
 </tr>
 </tbody>
</table>

Q9c) Explain responsive design with example

Q10a) Create a form using Optional form layouts of bootstrap

Q10b) Explain pre pended append input controls with example

