50, will be tresied as malpracie

g bank g,

Imes on the remainm

‘or equations wnilen cg, 42+8

compulsorly draw diggonal cross
n. appeal 10 evaluasior and

pleting your answers
ficatic:

2. Any mvealing of ideny

Imporiant Note : 1. On com

e SonanE

P L
Uss | |L' -3y |N~,| D| :"\l R
Lo I -] . ,
Fourth Semester MCA Degree Examination, June/July 2023
Advances in Web Technologies

20MC A4

Sie Slarks HH

Tune: 3 hirs.

Nate: Answer any FIVE full questions, chaosing ONE full question from eaih srodule.

Module-1
Expltin any six string functions in PITP
b. Explain Cookies in PHP.

riify Muarks)
(i dlarhed

Construct a PHP program to read student data fronm an XML fife and store it into MY SOL
{1 Marks

K. :
Retrieve and display the details using scarch options,
OR
2 a Explain Logical ipternal structure of arrays in I"HP tlkn Alarks
b. lllustrate Sessign Tratking in PHP. {1+ Marks)
¢. Build a PHP form to display text base | table | radio button . submit button and «lear bution
using XML " {40 Narks)
A Module:2
3 a Listdnd-explair different string metheds in Ruby 118 Marhsi
b. Develop a program for generating dynamic documents in Ruby on Rails. 14 Marks)
OR
4 a Demonstrate layouts in Rails. (O Marks
b. Develop a program in Ruby ta read list of names from the keyboard, convert them all 1o
12 Marhy

upper casc letters and place in an array and dispiay in 4 sorted format.

Module-3

Discuss the i:_liffél‘t’:ﬂcc between Traditional web application and Ajax model.
Describe-the different HTTP status code with ther message.
c. Buﬂt;gmgram to send the.data to the server using GE'T method in Ajax.

¢ L OR
6 a lain the technology behind Ajax. _
. cate a program to Send data to the server using POST methed in Afax,
coExplain the principles'of Ajax.

. {,CQ'J .
Create a Welf page using array of XMLUTTP request ohject,
Build a program to cancel pending request using fallback pattemn.
¢. Describe Predictive feich pattern.

S

e

OR
8 a Createa program for New comment Notifier using periodic refresh.
- Describe Periodic.tefresh pattemn.
¢. Build a progrdm for Page preloading using predictive fetch.
;

cj?;' lof2

»

&

{1y AMarks)
(44 Marks)
(I Abarkys)

L5 Murkyy
(20 Markesy
(U5 Marks)

{08 Marks)
(U8 Marky)
T Alarkyy

(I MLarhsy
(U4 Marksy
LUK Yurks)

Module-5
9 a Explain Fluid Grid system, with an example.
. Create a table using bootstrap table classes.
c. Explain Responsive design with example.

OR .\
10 a. Create a form using Optional form layouts of Bootstrap.
b. Explain Prepended appended Input controls with example.

Q1la) Explain any six string functions in PHP

20MCA41

(05 Marks)
{10 Marks}
(05 Marks)

(10 Marks)
{10 Marks)

Function Name | Parameters Description
sirlen One siring Returns number of characters in the string
Returns zero if both strings are equal. a -ve number
— Two strings if the first string oceurs before second string or a
i & ~+ve number if the first string oceurs after the
second string
R Two strings Returns position of second string in the first string
P £ or falze if not found
Retuns the substring from the specified string
substr Ome string and one | from the position specified as an integer. If a third
integer integer value 15 specified, it represents the length of
the substring to be retrieved
. Returns the string with all white space characters
chop One string)
removed from the end
; ; Retumns the string with all white space characters
trim One string = e
removed on both sides
. . Returns the string with all wlute space characters
lirim One string . L
removed from the beginning
. Returns the string with all the characters converted
striolower One string
to lowercase
. Returns the string with all the characters converted
strioupper One string
= to uppercase
strrev One string Returns the reverse of the given string
. Returns the string in which a old substring is
str_replace Three strings . =
- replaced by the new substring
str word count | One string Returns the word count in the given string

Function Input Output
strlen strlen("star") 4
stremp stremp("twinkle” "twinkle™) 0
stremp stremp("twinkle”,"star™) 1
stremp stremp(“star”,"twinkle") -1

strpos strpos("twinkele twinkle little star” "little™) || 17

substr substr("little star” &) star

chop chop("!star!"."1") Istar

trim trim (" star!"."1") star

ltrim ltrim("star!”."1") star!
strtolower || strtolower(" Twinkle") twinkle
strtoupper || strtoupper(" Twinkle™") TWINKLE
substr substr("twinkle",1.4) wink

Q1b) Explain Cookies in PHP

e A cookie is a small object of information that consists of a name and a textual value. A
cookie is created by some software system on the server.

e The header part of an HTTP communication can include cookies. So, every request sent
from a browser to a server, and every response from a server to a browser, can include
one or more cookies.

e At the time it is created, a cookie is assigned a lifetime. When the time a cookie has
existed reaches its associated lifetime, the cookie is deleted from the browser's host
machine.

e Cookie is set in PHP with setcookie function

e First parameter is cookie’s name given as a string. The second, if present, is the new
value for the cookie, also a string. If the value is absent, setcookie undefines the cookie.

e The third parameter, when present, is the expiration time in seconds for the cookie, given
as an integer.

e The default value for the expiration time is zero, which specifies that the cookie is
destroyed at the end of the current session. When specified, the expiration time is often
given as the number of seconds in the UNIX epoch, which began on January 1, 1970. The
time function returns the current time in seconds. So, the cookie expiration time is given
as the value returned from time plus some number.

e For example,
setcookie("voted", "true”, time() + 86400);

This call creates a cookie named "voted" whose value is "true" and whose lifetime is one day
(86,400 is the number of seconds in a day).

e To delete a cookie, use the setcookie() function with an expiration date in the past:
setcookie("voted", "true", time() - 86400);

e All cookies that arrive with a request are placed in the implicit $ COOKIES array, which
has the cookie names as keys and the cookie values as values.

e We can retrieve the value of the cookie using the global variable $ COOKIE
S_COOKIE[Scookie_name]

Eg. $ COOKIE["voted"]

Program
<html>

<head>

<title>Last Visit using Cookies</title>
</head>

<body bgcolor="#cCCFFCC" text="#003300">

<h1> Web Programming Lab</h1>

<p> Welcome to Web Programming Lab </p>
<hr />
<p style="color:blue; font-style: italic">
<?php
date_default_timezone_set('Asia/Calcutta');
//Calculate 60 days in the future
//seconds * minutes * hours * days + current time
// set expiry date to two months from now
SinTwoMonths = 60 * 60 * 24 * 60 + time();
setcookie('lastVisit', date("G:i - m/d/y"), SinTwoMonths);
if(isset(S_COOKIE['lastVisit']))
{
Svisit=$_COOKIE['lastVisit'];
echo "Last Visited on : ".Svisit;
}
else
echo "You've got some old cookies!";
>
</p>
</body>

</html>

Qlc) Construct a PHP program to read student data from an XML file and store it into MYSQL. Retrieve
and display the details using search option.

8.xml
<?xml version="1.0" encoding="1S0-8859-1"7>
<student_info>
<student>
<usn>1CR17MCAO01</usn>

<name>Ajay</name>
</student>

<student>
<usn>1CR17MCAO02</usn>
<name>Akshatha</name>
</student>

<student>
<usn>1CR17MCA58</usn>
<name>Piyush</name>
</student>

<student>
<usn>1CR17MCA59</usn>
<name>Taj</name>
</student>

</student_info>

<body>
<form name="form1" method="post" action="8.php">
Enter Name <input type="text" name="stname">
<input type="submit" name="submit" value="search™>
</form>

</body>

</html>

$con = mysql_connect("localhost”,"root","");
if (!$con)

die("Could not connect: ' . mysql_error());

mysql_select_db("webl", $con);
$lib = simplexml_load_file("7.xml");

$i = "delete from student™;
$result = mysql_query($i);
foreach($lib as $stu)

$usn= $stu->usn;
$name=3$stu->name;
$i="insert into student(usn,name) values('$usn’,'Sname")";

mysaql_query($i);
¥

if(3_SERVER['REQUEST _METHOD"]=="POST")||($_SERVER['REQUEST_ METH
OD"]=="post"))

{
$stname = $_POST["stname"];

$result = mysql_query("SELECT * from student where name LIKE '%".$stname."%"");
echo "<table border="1"><tr><th>USN</th><th>Name</th></tr>";

while($row = mysql_fetch_array($result))
{

echo "<tr><td>". $row['usn’] . "</td><td>" . $row['name’] . "<ftd></tr>";

echo "</table>";

7>
Output:-
| T, G Wi DEEEEEEER- S

€ Ccn0
5 App: @ [) 1O

v <student_info>
v <student>
<usn>1CR17MCA®1</usn>
<name>Ajay</name>
</student>
v <student>
<usn>1CR17MCA@2</usn>
<name>Akshatha</name>
</student>
v <student>
<usn>1CR17MCA58</usn>
<name>Piyush</name>
</student>
v <student>

<usn>1CR17MCA59</usn>
<name>Taj</name>

T e i - R e
V ceecamcapiveporal x ¥ 5 Gt %"V ew Tt DT - |
<« C 1 | ® localhost
i Apps @@ (3 1CO Convert- Crea PDF to DOC - Con Button Maker

Enter Name |Ajay search

[UsN |Name]
[ICR17MCAO1]|Ajay |

Q2a) Explain logical internal structure of arrays in PHP

Key Value Next

[B o ity
4 ¢ |—current (Sefuntil \"
— / { \Access Functions/
| L f N 7

/ 5
i
¥
S ‘/ Key Value Next
f Key-Based\-'__> Hash

\Access Functions/ Function |\

"\\ W R, /

\ v
N\ Key Value Next
\

[¢

J

i

Flgure 11.3 Logical internal structure of arrays

Internally, the elements of an array are stored in a linked list of cells, where
each cell includes both the key and the value of the element. The cells them-
selves are stored in memory through a key hashing function so that they are ran-
domly distributed in a reserved block of storage. Accesses to elements through

string keys are implemented through the hashing function. However, the ele-
ments all have links that connect them in the order in which they were created,
which allows them to be accessed in that order if the keys are strings and in the
order of their keys if the keys are numbers. Section 11.7.4 discusses the ways
array elements can be accessed in order.

Figure 11.3 shows the internal logical structure of an array. Although arrays
may not be implemented in this exact way, it shows how the two different access
methods could be supported.

Q2b) Illustrate session tracking in PHP

In many cases, information about a session is needed only during the session. Also, the needed
information about a client is nothing more than a unique identifier for the session, which is
commonly used in shopping cart applications. For these cases, a different process, named session
tracking, can be used.

e Rather than using one or more cookies, a single session array can be used to store
information about the previous requests of a client during a session.

e In particular, session arrays often store a unique session ID for a session.

e One significant way that session arrays differ from cookies is that they can be stored on
the server, whereas cookies are stored on the client.

e InPHP, asession ID is an internal value that identifies a session. Session IDs need not be
known or handled in any way by PHP scripts.

e PHP is made aware that a script is interested in session tracking by calling the session
start function, which takes no parameters. The first call to session start in a session causes
a session ID to be created and recorded.

e On subsequent calls to session_start in the same session, the function retrieves the
$_SESSION array, which stores any session variables and their values that were
registered in previously executed scripts in this session.

e Session key/value pairs are created or changed by assignments to the $ SESSION array.
e They can be destroyed with the unset operator.

e Consider the following example: session_start();
if (11sSet($_SESSION["page_number")))
$ SESSIONppage_number") = 1;
$page_num = $_SESSION["page_number"];
print("You have now visited $page_num page(s)
");
$ SESSIONppage number")++;
e If this is not the first document visited that calls session start and sets the page_number
session variable, this script will produce the specified line with the last set value of
$ SESSION ["page_number") .

e If no document that was previously visited in this session set page_number, this script
sets page number to 1, produces the line ‘You have now visited 1 page(s)‘, and
increments page_number

Program
<html>
<head>
<title>Page Views </title>
</head>
<body bgcolor="#cCCFFCC" text="#003300">
<h1> Web Programming Lab</h1>
<p> Welcome to Web Programming Lab </p>
<hr />
<p style="color:blue; font-style: italic">
<?php
session_start();
/Isession_register("count™);
$ SESSION["count"];
if(lisset($_SESSION["count"]))
{
$ SESSION["count™] = 0;
echo "Counter initialized...
";
}
else { $_SESSION["count"]++; }
echo "Number of Page Views : $ SESSION[count]</p>";
7”>
<p>Reload this page to increment</p>
</body>

</html>

C) Build a PHP form to display text base, table, radio button, submit button, and clear button using XML

<IDOCTYPE HTML>

<html>

<head>

</head>

<body>

<?php

if (5_SERVER["REQUEST_METHOD"] == "POST") {
Sname = test_input(S_POST["name"]);
Semail = test_input($_POST["email"]);

Swebsite = test_input($S_POST["website"]);

Scomment = test_input($S_POST["comment"]);
Sgender = test_input(S_POST["gender"]);

echo "<h2>Your Input:</h2>";
echo Shame;
echo "
";
echo Semail;
echo "
";
echo Swebsite;
echo "
";
echo Scomment;
echo "
";
echo Sgender;
}
>
<h2>PHP Form Validation Example</h2>
<p>* required field</p>
<table>
<form method="post" action="<?php echo htmlspecialchars(S_SERVER["PHP_SELF"]);?>">
<tr>
<td>Name: </td><td><input type="text" name="name" value=""></td>
</tr>
<tr>
<td>E-mail: </td><td><input type="text" name="email" value=""></td>
</tr>
<tr>
<td> Website: </td><td><input type="text" name="website" value=""></td>

</tr>
<tr>
<td> Comment: </td><td><textarea name="comment" rows="5" cols="40"></textarea></td>
</tr>
<tr>
<td> Gender: </td><td>
<input type="radio" name="gender" <?php if (isset(Sgender) && Sgender=="female") echo
"checked";?> value="female">Female
<input type="radio" name="gender" <?php if (isset(Sgender) && Sgender=="male") echo "checked";?>
value="male">Male
<input type="radio" name="gender" <?php if (isset(Sgender) && Sgender=="other") echo "checked";?>
value="other">Other
</td></tr>
<tr><td colspan="2"><input type="submit" name="submit" value="Submit"> </td></tr>
</form>
</body>
</html>

Q3a) List and explain different string methods in Ruby

The String method for catenation is specified by plus (+). which can be used as a bmary

operator. This method creates a new string from its operands:
}} “HEPP}-'" + Py + iLHD]_ida}"s!"

=> “Happy Hohdays!”

The << method appends a string to the right end of another string, which, of course,
makes sense only 1if the left operand 1s a variable. Like +, the << method can be used as a
binary operator.

>> mystr = "G'day,"

=> "G'day,"

>> mystr << "mate"

=> "G'day, mate"

The first assignment creates the specified string literal and sets the variable mystr to
reference that memory location. If mystr i1s assigned to another variable, that variable
will reference the same memory location as mystr. [f a different string literal 1s assigned
to mystr, Ruby will build a memory location with the value of the new string hiteral and
mystr will reference that location. In order to change the content of same memory
location of mystr replace method 1s used.

>> mystr = "Wowl" >> mystr = "Wowl" »> mystr = *Wow!"
1 =} HWGWI. i - |'|Hul*|ll|
=> "Wowl!l' *» yourstr = mystr
>> yourstr = mystr - "]
>> yourstr = mystr => "Wow!l" *» mystr.replace("Golly!®)
=> "Wow!" »>> mystr = "What?" => *Golly!®
=> "What?" >> mystr
>> yourstr >> yourstr => "Gollyl”
=> "Wow!" => "Wowl " > yourstr

=> "Gollyl"

4. The other most commonly used methods of Ruby are similar to those of other
programming languages. Among these are the ones shown in Table below; all of them

create new strings.

Method Action

capitalize Convert the first letter to uppercase and the rest of the letters
to lowercase

chop Removes the last character

chomp Removes a newline from the right end, if there is one
upcase Converts all of the lowercase letters in the object to uppercase
downcase Converts all of the uppercase letters in the object to lowercase
strip Removes the spaces on both ends

lstrip Removes the spaces on the left end

rstrip Removes the spaces on the right end

reverse Reverses the characters of the string

swapcase Convert all uppercase letters to lowercase and all lowercase

letters to uppercase

5. As stated previously, all of these methods produce new strings, rather than modify thf.
given string in place. However, all of the methods also have versions that modify their
objects in place. These methods are called bang or mutator methods and are specified by
following their names with an exclamation point (!).

>> str = "Frank"
=> "Frank"

>> str.upcase

=> "FRANK"

>> str

=> "Frank"

>> str.upcase!
=> "“"FRANK"

>> str

=> "FRANK"

Q3b) develop a program for generating dynamic document in Ruby on rails

As an example of a dynamic document, we construct a new application that
gives a greeting, but also displays the current date and time, including the num-
ber of seconds since midnight (just so some computation would be included).
This application is named rails2 and the controller is named time. This
application will illustrate how Ruby code that is embedded in a template file can
accesse instance variables that are created and assigned values in the action
method of the controller.

Ruby code is embedded in a template file by placing it between the <% and
%> markers. If the Ruby code produces a result and the result is to be inserted
into the template document, an equal sign (=) is attached to the opening marker.
For example:

<p> The number of seconds in a day is: <%= 60 * 60 * 24 %>
</p>

After interpretation, this is as follows:
<p> The number of seconds in a day is: 86400 </p>

The date can be obtained by calling Ruby’s Time.now method. This
method returns the current day of the week, month, day of the month, time,
time zone,” and year, as a string. So, we can put the date in the response tem-
plate with:

<p> It is now <%= Time.now %> </p>

The value returned by Time.now can be parsed with the methods of the
Time class. For example, the hour method returns the hour of the day, the min
method returns the minutes of the hour, and the sec method returns the sec-
onds of the minute. These methods can be used to compute the number of sec-
onds since midnight. Putting these together results in the following template
file:

<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.1//EN"
"http://www.w3.0org/TR/xhtml11/DTD/xhtml11.dtd">

<!-- timer.rhtml - Response document for rails2 -
Hello World + time
———
<html xmlns = "http://www.w3.o0rg/1999/xhtml">
<head>
<title> rails2 example </title>

</head>

<body>
<h2> Hello World! </h2>
<p>
It 1s now <%= t = Time.now %>

Number of seconds since midnight:
<%= t.hour * 3600 + t.min * 60 + t.sec %>
</p>
</body>
</html>

class Time2Contreoller < ApplicationController
def timerz

Bt = Time.now
ftsec = €t.hour * 3600 + Bt.min * 60 + @t.sec
end

Q4) Demonstrate layouts in Rails

First, the user needs to define a layout template, and after that, we have to let the controller know that
we have created a template layout and can use it. Let's make the template first.

Create and add a new file named standard.html.erb to app/views/layouts. The controllers may know
which file you are using as a template by the file's name, so using proper names is advisable.

To the new standard.html.erb file add the following code and save your changes:
<IDOCTYPE HTML >
<html >
<head>
<meta content = "text/html; charset = is0-8859-1" / http-equiv = "Content-Type" >
<meta http-equiv = "Content-Language" content = "en-us" />
<title>Library Info System</title>

<%= stylesheet_link_tag "style" %>

</head>
<body id = "library">
<div id = "container">
<div id = "header">
<h1>Library Info System</h1>
<h3>Library powered by Ruby on Rails</h3>
</div>
<div id = "content">
<%= yield -%>
</div>
<div id = "sidebar"></div>
</div>
</body>
</html>
Explanation

The above code’s elements were just standard HTML elements. But there are two different lines in the
above code stylesheet_link_tag is a helper method that outputs a stylesheet <link>. In this example, we
are linking style.css style sheets.

You must be wondering why we have written yield in the above code. The yield command has its
advantage whenever there is a yield command, and then rails know that it should put HTML.erb for the
method called here.

In the book_controller.rb, add the following code from the second line.
class BookController < ApplicationController

layout 'standard'

def list

@books = Book.all

end

The above code uses the layout available in the standard.html.erb file.

4b) Develop a program in ruby to read list of names from the keyboard, convert them all to uppercase
letters and place in an array and display in a sorted format

print "Enter names seperated by space"
a = gets.chomp;

array = a.split(' ');

puts 'Names enterd by you : ' +array.to_s
uparray=array.map(&:upcase);
sort_ar=uparray.sort

puts 'Names converted to uppercase and sorted : ' +sort_ar.to_s

Q5a) Discuss the difference between traditional web application and Ajax model

Traditional Web Application Model

Web Browser
HTML, Images, 6 —
CSS, JavaScript Data
< || «——— S—
> —— | Database
HTTP Query/Data
Request . Request
Web Server
Ajax Web Application Model
Web Browser
~— 0
HTML, €SS Data n Data
"l . :.| (7
User Ajax
Interface » Engine > ——— > | Database
JavaScript HTTP Query/Data
Call Request - Request
Web Server

U Instead of the traditional web application model where the browser itself is responsible for
initiating requests to, and processing requests from, the web server, the Ajax model provides an
intermediate layer called an Ajax engine—to handle this communication.

An Ajax engine is really just a JavaScript object or function that is called whenever information
needs to be requested from the server.

Instead of the traditional model of providing a link to another resource (such as another web
page), each link makes a call to the Ajax engine, which schedules and executes the request. The
request is done asynchronously, meaning that code execution doesn’t wait for a response
before continuing.

The server—which traditionally would serve up HTML, images, CSS, or JavaScript—is configured
to return data that the Ajax engine can use. This data can be plain text, XML, or any other data
format that you may need. The only requirement is that the Ajax engine can understand and
interpret the data

When the Ajax engine receives the server response, it goes into action, often parsing the data
and making several changes to the user interface based on the information it was provided.
Because this process involves transferring less information than the traditional web application
model, user interface updates are faster, and the user is able to do his or her work more quickly.

Q5b) Describe the different HTTP status code with their message

Inside the anonymous function, we need to check on the data that’s been downloaded:

Is the download complete? Are we ready to use that data? You can determine that with two
properties of the XMLHttpRequest object: readyState and status.

The readyState property tells you how the data downloading is going. Here are the possible

values for this property—a value of 4 is what you want to see, because that means the data has
been fully downloaded:

0 Uninitialized
1 Loading

2 Loaded

3 Interactive

4 Complete

The status property is the property that contains the actual status of the download. This is

actually the normal HTTP status code that you get when you try to download web pages. For
example, if the data you're looking for wasn't found, you'll get a value of 404 in the status
property. Here are some of the possible values—note that you'll want to see a value of 200
here, which means that the download completed normally:

200 | OK

201 Created
204 Mo Content
205 Reset Content
206 Partial Content
400 Bad Request
401 Unauthorized
403 Farbidden
404 Mot Found
405 Method Mot Allowed
406 Mot Acceptable
407 - Prosxy Authentication Required
408 Request Timeout
411 | Length Required
413 Requested Entity Too Large
414 Requested URL Too Long
415 Unsupported Media Type
500 Internal Server Error
501 Mat Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Mot Supported

Q5 c) Build a program to send data to the server using GET method in Ajax

<html>
<head>
<title>An Ajax example</title>
<script language = "javascript">
var ajaxobj = false;
if (window.XMLHttpRequest) {
ajaxobj = new XMLHttpRequest();
} else if (window.ActiveXObject) {
ajaxobj = new ActiveXObject("Microsoft XMLHTTP");
}
function getData(dataSource, divID){
if(ajaxobj) {
var obj = document.getElementByld(divID);
ajaxobj.open("GET", dataSource);
ajaxobj.onreadystatechange = function()

if (ajaxobj.readyState == 4 &&
ajaxobij.status == 200) {
obj.innerHTML = ajaxobj.responseText;

}
}
ajaxobj.send(null);
}
}
</script>
</head>
<body>
<H1>An Ajax example</H1>
<form>
<input type = "button"” value = "Fetch the first message"
onclick = "getData('dataresponder.php?data=1’, 'targetDiv')">
<input type = "button" value = "Fetch the second message"
onclick = "getData('dataresponder.php?data=2’, 'targetDiv')">
</form>

<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>
</body>
</html>

dataresponder.php

<?php

if ($_GET["data"] =="1") {

echo 'The server got a value of 1';
}

if ($_GET["data"] =="2") {

echo 'The server got a value of 2';

}

7>

Q6 a) Explain Technologies behind Ajax
O HTML/XHTML: Primary content representation languages
O CSS: Provides stylistic formatting to XHTML
U DOM: Dynamic updating of a loaded page
d

XML: Data exchange format

O XSLT: Transforms XML into XHTML (styled by CSS)
U XMLHttp: Primary communication broker

O JavaScript: Scripting language used to program an Ajax engine

Q6b) Create Program to send data to server using POST method in Ajax

<html>
<head>
<title>An Ajax example</title>
<script language = "javascript">
var XMLHttpRequestObject = false;
if (window.XMLHttpRequest) {
XMLHttpRequestObject = new XMLHttpRequest();
} else if (window.ActiveXObject) {
XMLHttpRequestObject = new
ActiveXObject("Microsoft XMLHTTP");
}
function getData(dataSource, divID, data){
if(XMLHttpRequestObiject) {
var obj = document.getElementByld(divID);
XMLHttpRequestObject.open("POST", dataSource);
XMLHttpRequestObject.setRequestHeader('Content-
Type', 'application/x-www-form-urlencoded');
XMLHttpRequestObject.onreadystatechange =
function()

{
if (XMLHttpRequestObject.readyState == 4 &&
XMLHttpRequestObject.status == 200) {
obj.innerHTML =
XMLHttpRequestObject.responseText;

}

XMLHttpRequestObject.send("data="+data);

}
}
</script>
</head>
<body>
<H1>An Ajax example</H1>
<form>

<input type = "button" value = "Fetch the first message"

onclick = "getData('dataresponder.php’,'targetDiv’,1)">
<input type = "button" value = "Fetch the second message"
onclick = "getData('dataresponder.php’,'targetDiv’,2)">

</form>

<div id="targetDiv">

<p>The fetched message will appear here.</p>
</div>
</body>

</html>

dataresponder.php

<?php

if ($_GET["data"] =="1") {
echo 'The server got a value of 1';

}

if ($_GET["data"] =="2") {
echo 'The server got a value of 2';

}

7>

Qé6c) Explain the principles of Ajax

Q

Minimal traffic: Ajax applications should send and receive as little information as possible to
and from the server. In short, Ajax can minimize the amount of traffic between the client and
the server. Making sure that your Ajax application doesn’t send and receive unnecessary
information adds to its robustness.

No surprises: Ajax applications typically introduce different user interaction models than
traditional web applications. As opposed to the web standard of click-and-wait, some Ajax
applications use other user interface paradigms such as drag-and-drop or double-clicking. No
matter what user interaction model you choose, be consistent so that the user knows what to
do next.

Established conventions: Don’t waste time inventing new user interaction models that your
users will be unfamiliar with. Borrow heavily from traditional web applications and desktop
applications, so there is a minimal learning curve.

No distractions: Avoid unnecessary and distracting page elements such as looping animations
and blinking page sections. Such gimmicks distract the user from what he or she is trying to
accomplish.

Accessibility: Consider who your primary and secondary users will be and how they most likely
will access your Ajax application. Don’t program yourself into a corner so that an unexpected

new audience will be completely locked out. Will your users be using older browsers or special
software? Make sure you know ahead of time and plan for it.

U Avoid entire page downloads: All server communication after the initial page download should
be managed by the Ajax engine. Don’t ruin the user experience by downloading small amounts
of data in one place but reloading the entire page in others.

O User first: Design the Ajax application with the users in mind before anything else. Try to make
the common use cases easy to accomplish and don’t be caught up with how you’re going to fit in
advertising or cool effects.

Q7a) create a web page using array of XMLHTTP request object

<html>
<head>
<title>An Ajax example</title>
<script language = "javascript™>

var index = 0;
var XMLHttpRequestObjects = new Array();

function getDatal(dataSource, divID)
{
if (window.XMLHttpRequest) {
XMLHttpRequestObjects.push(new XMLHttpRequest());
} else if (window.ActiveXObject) {
XMLHttpRequestObjects.push(new
ActiveXObject("Microsoft. XMLHTTP"));

index = XMLHttpRequestObjects.length - 1;
if(XMLHttpRequestObjects[index]) {
XMLHttpRequestObjects[index].open("GET",
dataSource);
var obj = document.getElementByld(diviD);

XMLHttpRequestObjects[index].onreadystatechange = function()
{
if
(XMLHttpRequestObjects[index].readyState == 4 &&
XMLHttpRequestObjects[index].status == 200) {

obj.innerHTML =
XMLHttpRequestObjects[index].responseText;

}

¥
XMLHttpRequestObjects[index].send(null);
¥
}
function getData2(dataSource, divID)
{

if (window.XMLHttpRequest) {
XMLHttpRequestObjects.push(new XMLHttpRequest());
} else if (window.ActiveXObject) {
XMLHttpRequestObjects.push(new
ActiveXObject("Microsoft. XMLHTTP"));

index = XMLHttpRequestObjects.length - 1;
iIf(XMLHttpRequestObjects[index]) {
XMLHttpRequestObjects[index].open("GET",
dataSource);

var obj = document.getElementByld(diviD);
XMLHttpRequestObjects[index].onreadystatechange = function()

if
(XMLHttpRequestObjects[index].readyState == 4 &&

XMLHttpRequestObjects[index].status == 200) {

obj.innerHTML =
XMLHttpRequestObjects[index].responseText;

}
}
XMLHttpRequestObjects[index].send(null);

}
}
</script>
</head>
<body>
<H1>An Ajax example</H1>
<form>

<input type = "button" value = "Fetch the first message"
onclick = "getDatal('dataresponder.php?data=1', 'targetDiv')">
<input type = "button" value = "Fetch the second message"
onclick = "getData2('dataresponder.php?data=2', 'targetDiv')">
</form>
<div id="targetDiv">
<p>The fetched message will appear here.</p>
</div>

</body>
</html>

dataresponder.php

<?php

if ($_GET["data"] =="1") {

echo 'The server got a value of 1';
}

if ($_GET["data"] =="2") {

echo 'The server got a value of 2';

}

7>

Q7b) Build a program to cancel pending request using fallback pattern

var oXHR = null;

var ilnterval = 1000;

var iLastCommentld = -1;

var divNotification = null;
var blnReguestsEnabled = true;

Now, the blnRequestsEnabled variable must be checked before any request is made. This can be
accomplished by wrapping the body of the checkComments () function inside of an i £ statement:

function checkComments() {

if (blnRequestsEnabled) (
if (!oXHR) {
oXHR = zXmlHttp.createRequest();
)} else if (oXHR.readyState != 0) (
oXHR.abort () ;
]

oXHR.open{*"get", "CheckComments.php", true);
oXHR.onreadystatechange = function () ({
if (oXHR.readyState == {) {
if (oXHR.status == 200 || oXHR.status == 304) {
var aData = oXHR.responseText.split("||");:
if (aData[0] != iLastCommentId) {
iLastCommentId = aData[0];
if (iLastCommentld != -1} {
showNotification(aData[l], aData([2]);
)
)

setTimeout (checkComments, ilnterval);

};

oXHR.send(null) ;

function checkComments(] {

if (blnRequestsEnabled)

try {

if (!oXHR) |

o¥HE = z¥mlHttp.createRegues
} elgse if (o¥HR.readyState != 0) [

oXHR.abort();
1
oXHR.open("get®, "CheckComments.php®, true);
oXHE.onreadystatechange = function () {

if (oXHR.readyState == 4) |

if (oXHR.status == 200 || oXHR.status == 304) {

var alData = oX¥HR.responseText.split(®||");
1f [aDatal[l] !'= i1lastCommentId)

if (iLastCommentId != =1) |
showMotification{abData[l], aData[2]];

1

ilastCommentId = aDatal0];

1

setTimeout [checkfomment=s, ilnterwval);
I else |
blnRegquestsEnabled = false;

}i

oXHE. send (null) ;
} catch (ocException) {
blnRequestsEnabled = false;

Q7c) Describe predictive fetch pattern

In a traditional web solution, the application has no idea what is to come next. A page is
presented with any number of links, each one leading to a different part of the site. This
may be termed “fetch on demand,” where the user, through his or her actions, tells the
server exactly what data should be retrieved. While this paradigm has defined the Web
since its inception, it has the unfortunate side

effect of forcing the start-and-stop model of user interaction upon the user. The Predictive
Fetch pattern is a relatively simple idea that can be somewhat difficult to implement: the
Ajax application guesses what the user is going to do next and retrieves the appropriate
data. In a perfect world, it would be wonderful to always know what the user is going to do
and make sure that the next data is readily available when needed.

In reality, however, determining future user action is just a guessing game depending on
your intentions There are simple use cases where predicting user actions is somewhat
easier. Suppose that you are reading an online article that is separated into three pages. It
is logical to assume that if you are interested in reading the first page, you're also

interested in reading the second and third page. So, if the first page has been loaded for a
few seconds (which can easily be determined by using a timeout), it is probably safe to
download the second page in the background. Likewise, if the second page has been loaded
for a few seconds, it is logical to assume that the reader will continue on to the third page.
As this extra data is being loaded and cached on the client, the reader continues to read and
barely even notices that the next page comes up almost instantaneously after clicking the
Next Page link. The Google Maps is another real world example for predictive fetch pattern.
It predicts the nearby places when we search a particular destination.

Q8a) create a program for new comment notifies using periodic refresh

= *php
header (*Cache=control: Ho=Cache®):
header (*“Expires: Fri, 30 Oct 1998 14:19:41 GMT");

J/database 1nformation

ssbBServer = "your.database.server”®;
SeDBMame = “your_db name" ;
sebBUsername = “your_db usernams®:
5eD0BPassword = "your_db password®;

JJ/ocreate the SQL guery string
5e50L = "gelect Commentld,Mame, LEFT(Message, 50) as ShortMessage from
BlogComments order by Date desc limit 0,1°;

Solink = myeqgl_connect {$sDBServer, $sDBUsername, $sDBPasaword) ;
Bmy=ql_select_db{$sDEName) or die(*=1|| || *1:

if(%oResult = mysgl_guery(%sS5QL) and mysqgl_num rows ($oResult) = 0) {
5aValues = mysgl_fetch_array({5oResult, MYSQL_ASS00)
echo %aValues['CommentId']."||®.%aValues[‘Name']."*||".
SaValues|['ShortMessage'];
1 else [
echo "=1|| || *:
}

mysgl_free_result [%cResult) ;
mysgl_close (SoLlink) ;

function showtotification(sName, sMessage)] {
if ('divNotification) |
diviotification = document.createElement {*div®) ;
diviotification.className = *notification®;
document . body. appendChild (divHotification) ;

diviotification.innerHTML = "New Comment
" + sName
+ " pays: " + gMeszage + "...<br /»<a href=*"ViewComment.php?id="
+ 1lastCommentId + *\">View</a=»";
diviotification.style.top = document.body. scrollTop + "px®;
divHotification.style.left = document.body.scrollLeft + "px";
divMotification.style.display = "block®;
setTimsout {function [) |
diviotification.style.display = "none®;
5000} ;

Q8b) Describe periodic refresh pattern

The Periodic Refresh design pattern describes the process of checking for new server information in
specific intervals. This approach, also called polling, requires the browser to keep track of when another
request to the server should take place. This pattern is used in a variety of different ways on the Web:

U ESPN uses Periodic Refresh to update its online scoreboards automatically. For example, the NFL
Scoreboard, located at http://sports.espn.go.com/nfl/scoreboard, shows up-tothe-minute scores and
drive charts for every NFL game being played at the time. Using XHR objects and a little bit of Flash, the
page repeatedly updates itself with new information.

U Gmail (http://gmail.google.com) uses Periodic Refresh to notify users when new mail has been
received. As you are reading an e-mail or performing other operations, Gmail repeatedly checks the
server to see if new mail has arrived. This is done without notification unless there is new mail, at which
point the number of new e-mails received is displayed in parentheses next to the Inbox menu item.

U XHTML Live Chat (www.plasticshore.com/projects/chat) uses Periodic Refresh to implement a chat
room using simple web technologies. The chat room text is updated automatically every few seconds by
checking the server for new information. If there is a new message, the page is updated to reflect it,
thus creating a traditional chat room experience.

Q8c) Build a program for page preloading using predictive fetch

= ¥php
Spage = 1;
Sdatalnly = false;

Q9a) Explain fluid grid system with example

The fluid grid system uses percentages instead of pixels for column widths. It has the
same responsive capabilities as our fixed grid system, ensuring proper proportions for
key screen resolutions and devices. You can make any row “fluid” by changing . row
to . row-fluid. The column classes stay exactly the same, making it easy to flip between
fixed and fluid grids. To offset, you operate in the same way as the fixed grid system—
add .offset* to any column to shift by your desired number of columns:

ediv class="row-fluid">
«div class="spand”». . .c/div>
«div class="spand”>...</div>
< fdiv>

odiv class="row-fluid">

«div class="spand”>...</div>

«div class="spand offset2™=. .. cfdivs
<[div>

Nesting a fluid grid is a little different. Since we are using percentages, each . row resets
the column count to 12. For example, if you were inside a .span8, instead of
two . spand elements to divide the content in half, you would use two . spané divs (see

Figure 1-4). This is the case for responsive content, as we want the content to fill 100%
of the container:

<div class="row-fluid">
<div class="spand’>
<div class="row">
<div class="span6”>...</div>
<div class="spang">...</div>
</div>
<[div>
</div>

Level 1 of column

Level 2 Level 2

Figure 1-4. Nesting fluid grid

Q9b) Create a table using bootstrap table class

<table class="table table-bordered table-dark">
<thead>
<tr>
<th scope="col">#</th>
<th scope="col">First</th>
<th scope="col">Last</th>
<th scope="col">Handle</th>
</tr>
</thead>
<tbody>
<tr>

<th scope="row">1</th>
<td>Mark</td>
<td>Otto</td>
<td>@mdo</td>
</tr>
<tr>
<th scope="row">2</th>
<td>Jacob</td>
<td>Thornton</td>
<td>@fat</td>
</tr>
<tr>
<th scope="row">3</th>
<td colspan="2">Larry the Bird</td>
<td>@twitter</td>
</tr>
</tbody>
</table>

Q9c) Explain responsive design with example

Responsive design is a method for taking all of the existing content that is on the page
and optimizing it for the device that is viewing it. For example, the desktop not only
gets the normal version of the website, but it might also get a widescreen layout, opti-
mized for the larger displays that many people have attached to their computers. Tablets
get an optimized layout, taking advantage of their portrait or landscape layouts. And
then with phones, you can target their much narrower width. To target these different
widths, Bootstrap uses C55 media queries to measure the width of the browser viewport
and then, using conditionals, changes which parts of the stylesheets are loaded. Using
the width of the browser viewport, Bootstrap can then optimize the content using a
combination of ratios or widths, but it mostly relies on min-width and max-width
properties.

At the core, Bootstrap supports five different layouts, each relying on CS5 media queries.
The largest layout has columns that are 70 pixels wide, contrasting with the 60 pixels of
the normal layout. The tablet layout brings the columns to 42 pixels wide, and when
narrower than that, each column goes fluid, meaning the columns are stacked vertically
and each column is the full width of the device (see Table 1-1).

Table I-1. Responsive media queries

Layout width Column width Gutter width

Large display 1200px andup ~ 70px 30px
Default 980px and up gy Moy
Portrait tablets 768px and up 4lpy Hpx
Phones to tablets 767 and below Fluid columins, no fised widths
Phiones 430p and below Fluid columins, no fived widths

To add custom CS5 based on the media query, you can either include all rules in one
C55 file via the media queries below, or use entirely different C55 files:

J* Large desktop *f
@redia (min-width: 12@6px) { ... }

/* Portroit tablet to landscape and desktop */

@media (min-width: 768px) and (max-width: 97opx) { ...]

/= Landscape phone to portrait toblet =/

Bredia (max-width: 76Tpx) { ... }

/* Landscape phones and down */

imedia (max-width: 4B8px) [... }
For a larger site, you might want to divide each media query into a seperate CSS5 file. In
the HTML file, you can call them with the <1link= tag in the head of your document.
This is useful for keeping file sizes smaller, but it does potentially increase the HTTP
requests if the site is responsive. If you are using LESS to compile the CSS, you can have
them all processed into one file:

<link rel="stylesheet" href="base.css" f»

<link rel="stylesheet" media="({min-width: 1200px)" href="large.css" [>

«<link rel="stylesheet" media="(min-width: 76Bpx) and (max-width: 979px)"
href="tablet.css” [=>

<link rel="stylesheet" media="(max-width: 767px)" href="tablet.css" [»

«<link rel="stylesheet" media="(max-width: 480px)" href="phone.css" [»

Q10a) Create a form using Optional form layouts of bootstrap

Search form

Add .form-search to the <form= tag, and then add . search-query to the <input= for
an input box with rounded corners and an inline submit button (see Figure 2-20):

<form class="form-search"»
<input type="text” class="input-medium search-guery”>
<button type="submit” class="btn"=Search</button=
<fform>

I Search

Fieure 2-20. Search form
Inline form
To create a form where all of the elements are inline and labels are alongside, add the
class . form-inline to the <form= tag (see Figure 2-21). To have the label and the input
on the same line, use this inline form code:
<form class="form-inline"»

<input type="text" class="input-small" placeholder="Email">
<input type="password" class="input-small” placeholder="Password">

<label class="checkbox"»
<input type="checkbox"> Remember me

<[label>
<bitton types="submit" class="btn"»Sign in</button>

</forn>

Email Password _ Remember me Sign in

Horizontal form

Bootstrap also comes with a prebaked horizontal form; this one stands apart from the
others not only in the amount of markup, but also in the presentation of the form.
Traditionally you'd use a table to get a form layout like the one shown in Figure 2-22,
but Bootstrap manages to do it without using tables. Even better, if you're using the
responsive C85, the horizontal form will automatically adapt to smaller layouts by
stacking the controls vertically.

To create a form that uses the horizontal layout, do the following:

+ Add a class of . form-horizontal to the parent <form= element.
» Wrap labels and controls in a <div= with class .control-group.
+ Add a class of .control-label to the labels.

» Wrap any associated controls in a <div= with class . controls for proper alignment.

Email Email

Password Password

Remember me

Sign in

Figure 2-22. Horizontal form

<form class="form-horizontal">
«div class="control-group”=
<label class="control-label" for="inputEmail"»EmailefLabel>

adiv class="controls"»
«input type="text” id="inputEmail" placeholder="Email"=»
<fdiv=
< fdiv>
«div class="control-group”=
<label class="control-label” for="inputPassword">Password<flabel>
odiv class="controls"s
<input type="password" ide="inputPassword” placeholder="Password"»
<[div=
< fdive
«div class="control-group”=
adiv class="controls"»
<label clase="checkbox"s
<input type="checkbox"> Remember me
<[label>
<button type="submit" class="btn"sSign in</buttons
<fdiv=
<fdiv>
</form>

Q10b) Explain pre pended append input controls with example

Prepended and appended inputs

By adding prepended and appended content to an input field, you can add common
elements to the user’s input (see Figure 2-28). For example, you can add the dollar
symbol, the @ for a Twitter username, or anything else that might be common for your
application interface. To add extra content before the user input, wrap the prepended
input in a =div= with class .input-prepend. To append input, use the class .input-
append. Then, within that same <div=, place your extra content inside a with
an . add-on class, and place the <span= either before or after the <input= element:

ediv clase="input-prepend”s
<span class="add-on"»@
<imput class="span2” id="prependedInput" type="text" placeholder="Username">
<fdiv>
odiv class="input-append”»
<input class="span2” id="appendedInput” type="text"»
<gpan class="add-on"», B8
<fdiv>

@ Usemame

Figure 2-28. Prepend and append

If you combine both of them, you simply need to add both the .input-prepend
and .input-append classes to the parent <div= (see Figure 2-29):

«div class="input-prepend input-append”»
«span class="add-on"»5%
«input class="span2" id="appendedPrependedInput” type="text"»
.08

<fdiv>

5 .00

Figure 2-29. Using both the append and prepend

Rather than using a <span=, you can instead use <button> with a class of . btn to attach
(surprise!) a button or two to the input (see Figure 2-30):

ediv class="input-append”»
<imput class="span2” id="appendedInputButtons" type="text"s
<button class="btn" types="button">Searche/button>
<button class="btn" type="button”sOptions<fbutton>

<[div>

Search = Opfions

Figure 2-30. Attach multiple buttons to an input

If you are appending a button to a search form, you will get the same nice rounded
corners that you would expect (see Figure 2-31):

<form class="form-search"s
<div class="input-append”>
<input type="text" class="span? search-query"»
<button type="submit" class="btn"sSearche/button>
= fdive
«div class="input-prepend"»
<button type="submit" class="btn"sSearche/button>
«input type="text" class="span2 search-query"s»
< [div>
<fform>

I Search Search

Figure 2-31. Append button fo search form

