Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Complex Analysis, Probability and Statistical Methods

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and prove Cauchy's Riemann in polar form. (06 Marks)

b. Determine the analytic function f(z) = u + iv given that the real part $u = e^{2x}(x \cos 2y - y\sin 2y)$. (07 Marks)

c. Evaluate: $\int_{(0,3)}^{(2,+)} (2y+x^2) dx + (3x-y) dy$ along the parabola x = 2t, $y = t^2 + 3$. (07 Marks)

OR

2 a. State and prove Cauchy's integral theorem. (06 Marks)

b. Evaluate $\int_{C} \frac{e^{2z}}{(z+1)(z-2)} dz \text{ where } C: |z| = 3.$ (07 Marks)

c. If f(z) is analytic show that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4 |f'(z)|^2$. (07 Marks)

Module-2

3 a. Obtain the series solution of Bessel's differential equation:

$$x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + (x^{2} - n^{2})y = 0.$$
 (06 Marks)

b. If α and β are roots $J_n(x) = 8$ then prove that $\int_0^1 x J_n(\alpha x) J_n(\beta x) dx = 0$. (07 Marks)

c. If $x^3 + 2x^2 - x + 1 = a P_0(x) + bP_1(x) + cP_2(x) + dP_3(x)$ find the values of a, b, c, d. (07 Marks)

OR

4 a. Prove that
$$P_n(x) = \frac{1}{2^n \cdot n!} \frac{d^n}{dx^n} [(x^2 - 1)^n].$$
 (06 Marks)

b. Prove that
$$P_3(\cos\theta) = \frac{1}{8}(3\cos\theta + 5\cos 3\theta)$$
. (07 Marks)

c. Prove that
$$J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$
. (07 Marks)

Module-3

a. Find the coefficient of correlation and obtain the lines of regression for the following data:

X	1	2	3	4	5	6	7	8	9
У	9	8	10	12	11	13	14	16	15

(06 Marks)

b. The equations of regression lines of two variables x and y are x = 19.13 - 0.87y and y = 11.64 - 0.50x, find the correlation coefficient and means of x and y. (07 Marks)

Fit a curve of the form y = a + bx for the following data hence find y at x = 15.

X	1	3	4	6	8	9	11	14
V	1	2	4	4	5	7	8	9

(07 Marks)

OR

If the variable x and y such that:

i) x + y has variance 15

ii) x - y has variance 11

iii) 2x + y has variance 29 find σ_x , σ_y and coefficient of correlation.

(06 Marks)

b. Fit a parabola $y = a + bx + cx^2$ to the following data:

X	1	2	3	4	5	6	7
У	2.3	5.2	9.7	16.5	9.4	35.5	54.4

(07 Marks)

c. Fit a curve of the form $y = ax^b$ for the following data:

X	1	2	3	4	5
V	0.5	2	4.5	8	12.5

(07 Marks)

The p.d.f of a variate x is given by the following data:

v		1	0	1.4	2	3
D()	0.1	17	0.2	2V	0.2	V

Find the value of K. Also find $P(x \ge 0)$ and $P(-2 \le x \le 2)$.

(06 Marks)

b. Derive the mean and variance of the Binomial distribution.

(07 Marks)

c. If the mean and standard deviation of the number of correctly answered questions in a test given to 4096 students are 2.5 and $\sqrt{1.875}$. Find an estimate of the number of conditions answering correctly i) 8 or more questions ii) 2 or less. (07 Marks)

OR

- The number of accidents in a year to taxi drivers in city follows a Poisson distribution with mean 3. Out of 1000 taxi drivers find approximately the number of the drivers with:
 - i) No accident in a year

(06 Marks)

b. Find the value of C such that $f(x) = \begin{cases} \frac{x}{6} + c & 0 \le x \le 3 \\ 0 & \text{elsewhere} \end{cases}$ is p.d.f. Also find $P(1 \le x \le 2)$.

(07 Marks)

In a normal distribution 31% of the items are under 45 and 8% of the items are over 64. Find (07 Marks) the mean and standard deviation of the distribution.

Module-5

- 9 a. x and y are independent random variable, x takes values 2, 5, 7 with the probability $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$ respectively. y takes the values 3, 4, 5 with probability $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$.
 - i) Find the joint probability of X and Y

ii) Show that the covariance of X and Y is equal to zero.

(06 Marks)

- b. Define:
 - i) Null hypothesis
 - ii) Type I and Type II errors
 - iii) Degree of freedom

iv) Level of Significance.

(07 Marks)

c. 4 coins are tossed 100 times and the following results were obtained. Fit a binomial distribution for the data and test the goodness and fit. ($\chi^2_{0.05} = 9.49$ for 4 pd.f.). (07 Marks)

CMRIT LIBRARY

OR

BANGALORE - 560 037

10 a. In a hospital 230 females and 270 males were born in a year. Do these figures confirm the hypothesis that sexes are born in equal proportions. (10 Marks)

b. Random sample of 1000 engineering students from a city A and 800 form city B were taken. It was found that 400 students in each of the sample were from payment quota. Does the data reveal a significant different between the two cities in respect to payment quota students?

* * * * *