CBCS SCHEME

THOE			BBEE103/203
USN		Alba W	DBEE103/203

First/Second Semester B.E/B.Tech. Degree Examination, Dec.2023/Jan.2024 Basic Electronics for EEE Stream

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
1	a.	Explain the forward and reverse characteristics of pn-junction diode (consider a silicon semiconductor).	6	L2	CO1
	b.	With a neat circuit diagram and waveform, explain the working of Bridge rectifier.	6	L1	CO
	c.	A 9.1V reference source in to use a series connected zener diode and a resistor of $1k\Omega$, connected to a 30V supply. Calculate the circuit current when the supply voltage drops to 27V. Assume $I_{ZT}=20\text{mA}$. Also find the power dissipated in the resistor.	8	L3	CO
		OR /		_	,
2	a.	Write a note on diode approximation, also calculate current in the circuit when a silicon diode connected in series with a resistor of $4.7K\Omega$ is driven by a 15V dc supply.	6	L1	COI
	b.	With necessary waveform and circuit diagram, explain how a RC π -filter work.	6	L1	СО
	c.	Explain how Zener diode works as voltage regulator considering no-load and full-load conditions.	8	L2	СО
		Module – 2	Viena de la companya		
3	a.	Considering a BJT common emitter circuit, explain how voltage amplification is obtained.	6	L1	CO
	b.	With a neat circuit diagram, and characteristics graph, explain common base configuration of pnp transistor.	8	L1	CO
	c.	Explain the drain and transfer characteristics of n-channel JFET.	6	L2	CO
		OR			
4	a.	Explain how Q-point is obtained on a DC load line, considering a transistor base bias circuit.	6	L2	CO
	b.	Explain common collector configuration of pnp transistor with neat circuit diagram and characteristics.	8	L2	CO
	c.	With neat semiconductor model, explain how an enhancement type MOSFET works.	6	L1	СО

		Module – 3		2	
5	a.	Define the following with respect to op-amp: i) Input offset voltage ii) Input bias current iii) CMRR iv) Slew rate.	8	L1	CO2
	b.	Explain the open loop differential amplifier circuit using op-amp. Mention the advantage of negative feedback in amplifier circuit.			CO2
	c.	Derive output voltage equation for 3 input inverting summer using op-amp.	6	L3	CO2
		OR			
6	a.	Mention all the ideal op-amp characteristics.	6	L1	CO2
	b.	Design a non-inverting amplifier circuit using op-amp, if the gain of the amplifier in 10 and input voltage is 1V.	6	L3	ÇO2
	c.	Explain the working of op-amp connected as integrator, also draw the output waveforms.	8	L2	CO2
		Module – 4			,
7	a.	Convert the following numbers: i) $141.6875_{10} =2$ ii) $125.076_8 =16$ iii) $41F.BD_{16} =10$. CMRIT LIBRARY BANGALORE - 560 037	6	L3	CO3
	b.	Find the complement of the functions: i) $F_1 = \overline{X} Y \overline{Z} + \overline{X} \overline{Y} Z$ ii) $F_2 = X(\overline{Y} \overline{Z} + YZ)$ Apply De-Morgan's theorem as many times as necessary.	6	L3	CO3
	c.	Define combinational circuit. Design a half adder and implement using NAND gates.	8	L1	CO3
-		OR			
8	a.	Solve the following: i) Subtract using 10's complement 3250 – 72532 ii) Subtract using 2's complement 1010100 – 1000100.	6	L3	CO3
	b.	Express the Boolean function $F = XY + \overline{X}Z$ in product of maxterms form.	6	L2	CO3
	c.	Design a full adder and implement using basic gates.	8	L3	CO3

Module – 5	6	L3	001
A strain gauge with 40cm wire length and $25\mu m$ wire diameter has a resistance of 250Ω and a gauge factor of 2.5. Calculate the change in wire length and diameter when the resistance change is measured as 0.5Ω . Assume that the complete length of wire is strained positively.			CO4
With a neat diagram, explain the working of LVDT. Also mention the applications of it.	8	L1	CO4
. With a neat block diagram, explain the simple communication system.	6	L1	CO4
OR			
A parallel – plate capacitive transducer has a plate area $(l \times w) = (40 \text{mm} \times 40 \text{mm})$ and plate spacing (d) = 0.5 mm. Calculate the device capacitance and the displacement (Δd) that causes the capacitance to change by 5pF. Also, determine the transducer sensitivity.	6	L4	CO5
mention the applications of it. CMRIT LIBRARY	8	L1	CO5
	6	T.1	CO5
With a neat block diagram, explain AM superneterodyne receiver.	U	Li	COS
3 of 3			
3 of 3			
	resistance of 250Ω and a gauge factor of 2.5. Calculate the change in wire length and diameter when the resistance change is measured as 0.5Ω. Assume that the complete length of wire is strained positively. D. With a neat diagram, explain the working of LVDT. Also mention the applications of it. D. With a neat block diagram, explain the simple communication system. DR A parallel – plate capacitive transducer has a plate area (l × w) = (40mm × 40mm) and plate spacing (d) = 0.5mm. Calculate the device capacitance and the displacement (Δd) that causes the capacitance to change by 5pF. Also, determine the transducer sensitivity. D. With neat diagram, explain potentiometer type resistive transducer. Also	resistance of 250Ω and a gauge factor of 2.5. Calculate the change in wire length and diameter when the resistance change is measured as 0.5Ω. Assume that the complete length of wire is strained positively. b. With a neat diagram, explain the working of LVDT. Also mention the applications of it. c. With a neat block diagram, explain the simple communication system. 6 OR a. A parallel – plate capacitive transducer has a plate area (l × w) = (40mm × 40mm) and plate spacing (d) = 0.5mm. Calculate the device capacitance and the displacement (Δd) that causes the capacitance to change by 5pF. Also, determine the transducer sensitivity. b. With neat diagram, explain potentiometer type resistive transducer. Also mention the applications of it. CMRIT LIBRARY RANGALORE - 560 037	resistance of 250Ω and a gauge factor of 2.5. Calculate the change in wire length and diameter when the resistance change is measured as 0.5Ω. Assume that the complete length of wire is strained positively. b. With a neat diagram, explain the working of LVDT. Also mention the applications of it. c. With a neat block diagram, explain the simple communication system. b. With a neat block diagram, explain the simple communication system. c. With a neat block diagram, explain the simple communication system. c. With a neat block diagram, explain the simple communication system. c. With a neat block diagram, explain the simple communication system. c. With a neat block diagram, explain the simple communication system. c. With a neat block diagram, explain the simple communication system. c. With a neat block diagram, explain the simple communication system. c. With a neat block diagram, explain the simple communication system. c. With a neat block diagram, explain the simple communication system. c. With a neat block diagram, explain the simple communication system. c. With a neat block diagram, explain the working of LVDT. Also mention the diagram, explain the simple communication system. c. With a neat block diagram, explain the simple communication system. c. With a neat block diagram, explain the working of LVDT. Also mention the communication system. c. With a neat block diagram, explain the working of LVDT. Also mention the communication system. c. With a neat block diagram, explain the working of LVDT. Also mention the communication system. c. With a neat block diagram, explain the working of LVDT. Also mention the communication system. c. With a neat block diagram, explain the working of LVDT. Also mention the communication system. c. With a neat block diagram, explain the working of LVDT. Also mention the communication system. c. With a neat block diagram, explain the working of LVDT. Also mention the communication system. c. With a neat block diagram, explain the working of LVDT. Als