CBCS SCHEME

USN JOICER 2 2 A D O Q I

BESCKB204/BESCK204B

Second Semester B.E/B.Tech. Degree Examination, Dec.2023/Jan.2024
Introduction to Electrical Engineering

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
1	a.	State the ohm's law and its limitations? Also define KVL and KCL.	6	L1	CO1
	b.	With block diagram explain solar power generations.	6	L1	CO1
ži)	C.	A circuit of two parallel resistor having resistance of 15Ω and 95Ω connected in series with 10Ω . If the current through 10Ω resistor is 2A. Find: i) Current in 15Ω and 25Ω resistors ii) Voltage across the whole circuit iii) The total power and power consumed in all resistors.	8	L3	CO2
		OR			
2	a.	With block diagram, explain nuclear power generations.	6	L1	CO
	b.	With neat single line diagram explain the various steps of electrical power transmission and distribution system.	6	L1	CO
	c.	For the circuit shown in Fig.Q2(c). Find the current in 5Ω resistor.	8	L3	CO
	8	25v 35v Fig.Q2(c)			
			12		
		Module – 2			
3	a.	Module – 2 Write a short note on power triangle?	6	L2	
3	a. b.	Module – 2 Write a short note on power triangle? A series circuit with a resistor of 100ohms, capacitor of 25 microfarad and inductance of 0.15H is connected across 250V, 50Hz supply. Calculate	6 8	L2 L3	CO
3	-	Module – 2 Write a short note on power triangle? A series circuit with a resistor of 100ohms, capacitor of 25 microfarad and inductance of 0.15H is connected across 250V, 50Hz supply. Calculate impedance, current, power and power factor of circuit. Define the terms: i) RMS value ii) Average value iii) Form factor iv) Peak factor			CO
3	b.	Module – 2 Write a short note on power triangle? A series circuit with a resistor of 100ohms, capacitor of 25 microfarad and inductance of 0.15H is connected across 250V, 50Hz supply. Calculate impedance, current, power and power factor of circuit. Define the terms: i) RMS value ii) Average value iii) Form factor iv) Peak factor v) Amplitude vi) Frequency.	8	L3	
	c.	Write a short note on power triangle? A series circuit with a resistor of 100ohms, capacitor of 25 microfarad and inductance of 0.15H is connected across 250V, 50Hz supply. Calculate impedance, current, power and power factor of circuit. Define the terms: i) RMS value ii) Average value iii) Form factor iv) Peak factor v) Amplitude vi) Frequency.	6	L3	CO
3	b.	Module – 2 Write a short note on power triangle? A series circuit with a resistor of 100ohms, capacitor of 25 microfarad and inductance of 0.15H is connected across 250V, 50Hz supply. Calculate impedance, current, power and power factor of circuit. Define the terms: i) RMS value ii) Average value iii) Form factor iv) Peak factor v) Amplitude vi) Frequency.	8	L3	CO

BESCKB204/BESCK204B

		Module – 3			000
5	a.	With neat diagram explain any 5 parts of DC machine.	8	L3	CO3
	ь.	Derive torque equation for DC motor.	6	L2	CO3
	c.	An 8 pole generator has 500 armature and cross and has a useful five per pole	6	L1	CO3
\		of 0.65Wb, what will be the emf generated if it is lap connected and rms at			
		1000rpm? What must be the speed at which it is to be driven to produce the			ĺ
		same emf if is in wave mound.			L
		OR		T 43	000
6	a.	Explain the various methods used to control the speed of DC motor.	8	L2	CO3
	b .	With usual notation derive an emf equations of DC generator.	4	L1	CO
	c.	A 6 pole DC shunt motor take 20A form a 220V supply. The armature and	8	L3	CO:
		field resistances. The wave wound armature has 30 slots and each slot			
		containing 10 conductors. If the flux per pole is 0.02wb, Calculate:			
	24	i) Speed ii) torque developed iii) power developed.			L
		Module – 4		г	
7	a.	A transformer is rated at 100KVA, at full load its copper loss is 1000W and its	8	L3	ÇO:
		iron loss is 900W. Calculate:			
		i) The efficiency at fall load UPF			
		ii) Efficiency at half load, 0.8pf			
ě.		iii) The maximum efficiency at 0.85pf.			
	b.	With neat diagram explain he types of 3 – phase induction motor.	6	L2	CO
	c.	Explain the working principle of single phase transformers.	6	L1	CO.
		OR		T	
8	a.	Explain the various losses in a transformer and how to minimize them.	6	L2	CO
	b.	With diagram explain the concept of rotation magnetic field.	6	L2	CO
	c.	A three phase induction motor with 4 poles is supplied form the alternator	8	L3	CO
		having 6 poles running at 1000rpm. Calculate synchronous speech, rotor speed		-	41
		of the induction motor when slip is 0.04 and frequency of the rotor emf when	010015		
		the speed is 600rpm.	· ·		<u></u>
		Module – 5		T.0	T 600
9	a.	Define 'unit' used for consumption of electrical energy and explain the two	8	L2	CO
		part tariff with its advantages and disadvantages.		-	-
	b.	What is electric shock? Give the lists of preventive measures against the	6	L1	CO
		shock?			
	c.	What is the difference between fuse and MCTS?	6	L2	CO
		OR		T = -	T = -
10	a.	What is earthing? With neat diagram explain plate earthing.	8	L2	CO
	b.	With neat circuit diagram and switching table explain two very and three way	6	L2	CO
		control of lamp.			
	c.	Explain coning and copping types of wiring with its merits and demerits.	6	L1	CO

CMRIT LIBRARY
RANGALORE - 560 037

Date: 7/02/2024 Time: 2.00 pm to 5.00 pm Following Highlighted corrections to be made in respective Questions

CBCS SCHEME

USN COR 2 2 I S I 9 I

Time 3 tur

BESCKB204/BESCK204B

Second Semester B.E/B.Tech. Degree Examination, Dec.2023/Jan.2024
Introduction to Electrical Engineering

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. Use of VTU Hand book is permitted.

		Module – 1	M	L	C
1	C.	A circuit of two parallel resistor having resistance of 15Ω and 25Ω connected	8	L3	CO ₂
		in series with 10Ω . If the current through 10Ω resistor is 2A. Find:			
		i) Current in 15Ω and 25Ω resistors			ŧ
		ii) Voltage across the whole circuit			
		iii) The total power and power consumed in all resistors.			
	1	Module – 3	2 2 2	,	7
5	C.	An 8 pole generator has 500 armature conductors and has a useful flux per	6	L1	CO3
		pole of 0.065Wb, what will be the emf generated if it is lap connected and rms			
		ar 1000rpm? What must be the speed at which it is to be driven to produce the			
arrant, assert.		same emf it is in wave wound.			
		OR			
6	C.	A 6 pole DC shunt motor take 20A from a 220V supply. The armature and	8	L3	CO3
		field resistances are 0.4Ω and 110Ω respectively. The wave wound armature			
	i a s	has 30 slots and each slot containing 10 conductors. If the flux per pole is		R	
		0.02wb, Calculate:	,	. 5	
		i) Speed ii) torque developed iii) power developed.			
		Module - 5 CMRIT LIBRARY		T w 0	1 (10)
9	C.	What is the difference between fuse and MCB? BANGALORE - 560 037	6	L2	C05
		OR		7.4	1 000
10	c.	Explain casing and capping types of wiring with its merits and demerits.	6	L1	CO5