CBCS SCHEME ## BESCKB104/BESCK104B First Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Introduction to Electrical Engineering Max. Marks: 100 BANGALORE Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. VTU Formula Hand Book is permitted. 3. M: Marks, L: Bloom's level, C: Course outcomes. | | Module – 1 | M | L | C | |--------|---|---|----|-----| | Q.1 a. | Explain nuclear power generation with the help of neat block diagram. | 7 | L1 | CO1 | | b. | In the circuit shown find the power delivered by the source. 5.2. Fig.Q.1(b) | 7 | L3 | CO1 | | c. | State and explain Ohm's law with its limitations. | 6 | L1 | CO2 | | | OR | | | | | Q.2 a. | State and explain Kirchoff's current and voltage laws. | 7 | L1 | CO1 | | b. | Explain the general structure of electrical power system, using single line diagram. | 7 | L1 | CO1 | | c. | Calculate the currents in the network. Fig.Q.2(c) | 6 | L3 | CO2 | | | Module -2 | | | | | Q.3 a. | Obtain the behavior of voltage, current and power in a pure resistor connected to 1-\$\phi\$ A.C. supply. Draw the voltage, current and power waveforms. | 7 | L2 | CO2 | | b. | A current of average value 18.019A is flowing in a circuit to which a voltage of peak value 141.42V is applied. Determine: i) Impedance in polar form. ii) rms values of voltage and current. iii) Power consumed by the circuit. Assume voltage lags current by 30°. | 7 | L3 | CO2 | | | 1 of 3 | | | | ## BESCKB104/BESCK104B Define following terms related to sinusoidal waveform of AC parameter: L1 CO₁ ii) Amplitude iii) Frequency i) Instantaneous value vi) Peak factor. period v) Form factor OR CO₂ Derive the equation of the power consumed by R-L series circuit. Also L3 **Q.4** draw the waveforms of voltage current and power. A circuit consist of a resistance of 20Ω , an inductance of 0.05H connected L3 CO₂ in series. A supply voltage of 230V, 50Hz is applied across the circuit. Find the current, P.F. and power consumed by the circuit. Draw the vector diagram. 6 L1 CO₁ What are the advantages of a 3-\phi system over a single phase system? Module – 3 CO₃ With a neat diagram, explain the construction of D.C. generator. L1 Q.5 a. A 4 pole lap connected DC generator has 600 armature conductors and run CO₂ L3 at 1200rpm. The generator has total flux of 0.24wb, calculate the emf induced. Find the speed at which it should be driven to produce the same emf when wave connected. 6 L2 CO₂ Derive the torque equation of a D.C. motor. OR A 4 pole, 250V series motor has wave connected armature with 1254 L3 CO₂ Q.6 conductors. The flux per pole is 22mwb, when the motor is taking 50A. The armature and series field coil resistances are 0.3Ω and 0.2Ω respectively. Calculate the speed and torque of the motor and also power developed in watts. With usual notations derive an emf equation of D.C. generator. L₂ CO₂ Explain the following characteristics of a D.C. shunt motor: 6 L₂ CO₂ Torque vs armature current Speed vs armature current. ii) Module - 4 Derive the emf equation of a transformer and hence obtain the voltage and L₂ CO₂ Q.7current transformation ratios. CO₁ With neat figure explain the construction of two types of rotor of a 3-\$\phi\$ L₂ induction motor. **CMRIT LIBRARY** A 125KVA transformer has a primary voltage of 2000V at 60Hz with 182 L3 CO₂ and 40 turns on primary and secondary respectively. Calculate: i) no load secondary emf ii) Full load primary and secondary currents value of flux in the core. | | | BESCKB104/ | BES | SCK | | |------|---|--|-----|--------|--| | | 0 | R | 7 | L2 | | | Q.8 | Explain how a rotating magnetic induction motor. | flux is created in the stator of 3-φ | , | 3.7.22 | - | | | . A 3-φ, 6 pole, 50Hz induction motor synchronous speed, rotor speed and | has a slip of 3% at full load. Find the the frequency of rotor current at full | 7 | L3 | The state of s | | | load. | | | | - | | | Explain the various losses in a transfer | ormer and how to minimize them. | 6 | L1 | - | | | · Mod | ule – 5 | // | , | | | Q.9 | Explain two way and three way con truth table. | trol of lamps with circuit diagram and | 7 | L1 | | | | Define "unit" used for consumption of part tariff with its advantages and dis | of electrical energy and explain the two advantages. | 6 | L1 | | | | . What is earthing? Explain plate earth | ing with neat figure | 7 | L2 | | | | . What is earthing? Explain place earth | ming with hour ribure. | - | | | | | 0 | OR in the string shoots | | 12 | | | Q.10 | | on precautions against electric shock. | 6 | L2 | | | | List out the power rating of conditioners, PCs, laptops, printers e | household appliances including air tc. | 7 | L2 | | | | . Explain casing-capping wiring with | neat diagram. | 7 | L2 | | | | . Explain casing capping | BANGALORE - 560 037 | | | | | | | | | | | | | | 3 of 3 | | | |