GBGS SCHEME

USN			
W 10 10 10 10 10 10 10 10 10 10 10 10 10			

Second Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024

Mathematics – II for CSE Stream

Time: 3 hrs.

Max. Marks: 100

BMATS201

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

				T	
		Module – 1	M	L	C
Q.1	a.	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz.$	7	L2	CO1
	b.	Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dxdy$ by changing into polar coordinates.	7	L3	CO1
	c.	Show that $\beta(m, n) = \frac{\gamma(m)\gamma(n)}{\gamma(m+n)}$	6	L2	CO1
		OR			
Q.2	a.	Evaluate $\int_{0}^{1} \int_{y}^{\sqrt{y}} (x^2y + xy^2) dxdy$ by changing the order of integration.	7	L3	CO1
	b.	Show that $\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi/2} \sqrt{\sin \theta} d\theta = \pi$	7	L2	CO1
	c.	Using mathematical tools, write the code to find the area of an ellipse by double integration $A = 4 \int\limits_0^a \int\limits_0^{\frac{b}{a} \sqrt{a^2 - x^2}} dy dx$, taking $a = 4$, $b = 6$.	6	L3	CO5
		Module – 2			
Q.3	a.	Find the directional derivative of $\phi = 4xz^3 - 3x^2y^2z$ at (2, -1, 2) along vector $2i - 3j + 6k$.	7	L2	CO2
	b.	Show that the vector $\vec{F} = \frac{xi + yi}{x^2 + y^2}$ is both solenoidal and irrotational.	7	L2	CO2
	c.	Prove that the spherical coordinate system is orthogonal.	6	L3	CO2
		OR	7	1.0	CO1
Q.4	a.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z^2 + y^2 - x = 3$ at $(2, -1, 2)$.		L2	CO2
	b.	Express the vector $\vec{A} = z\hat{i} - 2x\hat{j} + y\hat{k}$ in cylindrical coordinates.	7	L2	CO2
2	c.	Using mathematical tools, write the code to find the curl of $\vec{F} = x^2yz\hat{i} + y^2zx\hat{j} + z^2xy\hat{k}$.	6	L3	CO5
		1 of 3			
		1 2 2			

				BMATS201			
	n 6	Madula 2		200.100			
Q.5	a.	Prove that the subset $W = \{(x, y, z) : ax + by + cz = 0; x, y, z \in R\}$ of the vector space R^3 is a subspace of R^3 .	7	L2	CO3		
	b.	Determine the following vectors are linearly independent or not, $x_1 = (2, 2, 1), x_2 = (1, 3, 7)$ and $x_3 = (1, 2, 2)$ in \mathbb{R}^3 .	7	L2	CO3		
	c.	Show that the function $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by $T(x, y) = (x + y, x - y, y)$ is a linear transformation.	6	L2	CO3		
		OR			~~~		
Q.6	a.	Determine whether the vectors $v_1 = (1, 2, 3)$, $v_2 = (3, 1, 7)$ and $v_3 = (2, 5, 8)$ are linearly dependent or linearly independent.	7	L2	CO3		
	b.	Verify the Rank-Nullity theorem for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x + 2y - z, y + z, x + y - 2z)$.	7	L2	CO3		
	c.	Consider the vectors $u = (1, 2, 4), v = (2, -3, 5), w = (4, 2, -3)$ in \mathbb{R}^3 . Find: i) $\langle u.v \rangle$ ii) $\langle u.w \rangle$ iii) $\langle v.w \rangle$ iv) $\langle (u+v).w \rangle$	6	L2	CO3		
		Module 4					
Q.7	a.	Find an approximate value of the root of the equation $x^3 - x^2 - 1 = 0$, using the Regula-Falsi method upto four decimal places of accurancy, where root lies between 1.4 and 1.5.	7	L2	CO4		
	b.	Using Newton's divided difference formula evaluate $f(4)$ from the following:	7	L2	CO4		
	c.	Evaluate $\int_{0}^{6} \frac{1}{1+x^2} dx$ by using Trapezoidal rule by taking 7 ordinates.	6	L3	CO4		
		OR			T		
Q.8	a.	Find an approximate root of the equation $x \log_{10} x - 1.2 = 0$ corrected to five decimal places where root lies near 2.5 by Newton-Raphson method.	7	L2	CO ²		
	b.	The area A of a circle of diameter d is given for the following values. Calculate the area of a circle of diameter 82 by using Newton's forward interpolation formula. d 80 85 90 95 100 A 5026 5674 6362 7088 7854 BANGALORE - 5	RAR	L2	CO		
	c.	Use Simpson's $1/3^{rd}$ rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates.	6	L2	CO		

			B	MAT	S201
Q.9	a.		7	L2	CO
V.		decimals from $\frac{dy}{dx} = x^2y - 1$ with an initial condition $y(0) = 1$.			
	b.	Using the Runge-Kutta method of fourth order solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with $y(0) = 1$ at $x = 0.2$ taking $h = 0.2$.	7	L2	СО
	c.	Given that $\frac{dy}{dx} = x^2(1+y)$ and $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.548$ and $y(1.3) = 1.979$. Compute y at $x = 1.4$ by applying Milne's method.	6	L2	CO
		OR	L		
Q.10	a.	Using modified Euler's method, solve $\frac{dy}{dx} = 3x + \frac{y}{2}$ at $x = 0.1$ corrected to four decimal places by taking $h = 0.1$, with initial condition $y(0) = 1$.	7	L2	СО
			-	1.0	00
	b.	Given that $\frac{dy}{dx} = x - y^2$ and $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$, $y(0.6) = 0.1762$. Compute $y(0.8)$ by Milne's method.	7	L2	CO
			6	L3	CC
	c.	Using mathematical tools, write the code to find the solution of $\frac{dy}{dx} = 1 + \frac{y}{x}$	U	LS	
		at y(2) taking $h = 0.2$. Given that y(1) = 2 by Runge-Kutta method of 4^{th} order. CMRIT LX 13 BANGALORE 560 0	Y 37		* 2
		****	7.2		
				2 8 80 7 20	
	Á		6.91		
		3 of 3			
	1				