

First/Second Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024

Applied Physics for EEE Stream

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

MANGAIME: 3 hrs.

3. M: Marks, L: Bloom's level, C: Course outcomes.

4. Speed of light $c = 3 \times 10^8$ m/s, $K = 1.38 \times 10^{-23}$ J/K, $h = 6.625 \times 10^{-34}$ JS, g = 9.8 m/s², $\epsilon_0 = 8.854 \times 10^{-12}$ F/m

		Module – 1	M	L	C
Q.1	a.	State and explain Heisenberg's uncertainty principle and show that there is no existence of electrons in the nucleus of an atom.	9	L2	CO1
5	b.	What is a wave function, probability density and normalization of wave function?	7	L2	CO1
	c.	Find the lowest energy of an electron confined to move in a one dimensional potential box of length 1A in electron volts.	4	L3	CO1
	1	OR			
Q.2	a.	Setup time Independent Schrodinger's wave equation for a particle in one dimension.	7	L2	CO1
	b.	Discuss the wave functions, probability densities and energy for a particle in a box by considering the ground state and first two excited states.	9	L2	CO1
	c.	Calculate the de-Broglie wavelength of an electron when it is accelerated to a potential of 5000 V.	4	L3	CO1
	<u> </u>	Module – 2			
Q.3	a.	Mention any three assumptions of quantum free electron theory. Discuss the variation of Fermi factor with temperature and energy.	9	L2	CO1
	b.	Explain the construction and working of MAGLEV vehicle.	6	L2	CO1
	c.	An elemental solid dielectric material has polarizability of 7×10^{40} Fm ² .	5	L3	CO1
		Assuming the internal field to be Lorentz field, calculate the dielectric	Di Ni		
	1	constant for the material if the material has 3×10^{28} atoms/m ³ .			L
			7	L2	CO1
Q.4	a.	What is super conductivity? Describe Type-I and Type-II superconductors.	8	L2	COI
15	b.	What is dielectric polarization? Explain various types of polarization mechanism.			
	c.	Calculate the probability of an electron occupying an energy level 0.02 eV above the Fermi level at 200 K and 400 K in a material.	5	L3	CO1
THE PERSON NAMED IN COLUMN		Module – 3	,		
Q.5	a.	Obtain an expression for energy density of radiation under thermal equilibrium conditions in terms of Einstein's coefficients.	8	L2	CO2
	b.	What is attenuation? Explain different types of attenuation in optical fibers.	8	L2	CO2
3	c.	The average output power of laser source emitting a laser beam of wave length 6328 A is 5 mW. Find the number of photons emitted per second by the laser source.	4	L3	CO2
		OR			

BPHYE102/202

Q.6	a.	What is numerical aperture? Obtain an expression for numerical aperture interms of refractive indices of core and cladding of an optical fiber.	9	L2	CO2
	b.	Describe the working of a laser printer.	6	L2	CO ₂
	c.	The attenuation of light in an optical fiber is estimated at 2.2 dB/km. What	5	L3	CO ₂
		fractional initial intensity remains after 2 km and after 6 km.	•		
		Module – 4	7	L2	CO3
Q.7	a.	State and prove Gauss Divergence theorem.	8	L2	CO ₃
	b.	Explain Faraday's laws of electromagnetic induction and amperes law. Express the same in point form.			
	c.	Determine the constant c such that the vector $\vec{A} = (x + ay)\hat{a}_x + (y + bz)\hat{a}_y + (x + cz)\hat{a}_z \text{ is solenoidal.}$	5	L3	CO3
		L	l		
		OR 112 - mations	0	L2	CO3
Q.8	a.	Derive wave equation in terms of electric field using Maxwell's equations for free space.	8		
	b.	Discuss continuity equation. Derive the expression for displacement current.	8	L2	CO3
	c.	Calculate the curl of \vec{A} given by $\vec{A} = (1 + yz^2)\hat{a}_x + xy^2\hat{a}_y + x^2y\hat{a}_z$.	4	L3	CO3
	1	Module – 5			
Q.9	a.	Derive an expression for electrical conductivity in extrinsic and intrinsic semiconductors.	8	L2	CO4
	b.	Describe the construction and working of semiconductor laser with energy level diagram.	8	L2	CO4
	c.	The Hall coefficient of a specimen of a doped silicon is found to be 3.66×10^{-4} m ³ /c. The resistivity of the specimen is 9.93×10^{-3} ohm-m. Find	4	L3	CO4
		3.66 × 10 m ² /c. The resistivity of the specimen is 9.95 × 10 offin in 1 mg			
		the mobility and charge carrier density assuming single carrier conduction.			
		OR	9	L2	CO4
Q.10	a.	Explain Fermi level in an intrinsic semiconductor and derive the relation			
		between Fermi energy and energy gap for an intrinsic semiconductor.	7	L2	COS
	b.	Explain construction and working of photo diode.	4	L3	CO4
	c.	The resistivity of intrinsic germanium at 27°C is 0.47 ohm-meter. If the electron and hole mobilities are 0.38 m ² /VS and 0.18 m ² /VS respectively.	-		
		Calculate the intrinsic carrier density.			
		RANGALORE - 560 037			

		2 of 2			
		₩ V. ₩			