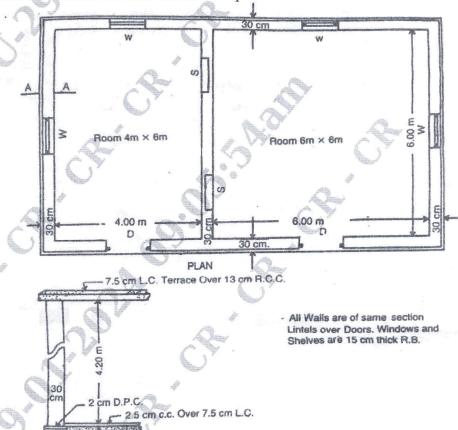
2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USINO

# Seventh Semester B.E. Degree Examination, Dec.2023/Jan.2024 Quantity Surveying and Contract Management

Time. 3 hrs.

1


Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Assume missing data (if any) suitably.

Module-1

- The detail of two room building are shown in Fig.Q.1. Estimate quantities and cost of the following items of work:
- i) Earthwork excavation in foundation at 300 Rs/m<sup>3</sup>.
- ii) Lime concrete in foundation at 2500/m<sup>3</sup>
- iii) First class Brickwork in CM (1:6) in foundation and plinth at 1800/m<sup>3</sup>.
- iv) First class Brickwork in Lime mortar in superstructure at Rs.2000/m<sup>3</sup>. (20 Marks)



CROSS SECTION OF WALL ON A-A

Doors D-1.20 m  $\times$  2.10 m Windows W-1.00  $\times$  1.50 m Shelves S-1.00 m  $\times$  1.50 m

Fig.Q.1

# OR

- What are the different types of Estimates? Explain any four different types of Estimates.
  (20 Marks)
  - Module-2
- The details of man hole is as shown in Fig.Q.3. Estimate the quantities for the following item of work:
  - i) Earthwork excavation in foundation
  - ii) Cement concrete 1:3:6 floor and foundation
  - iii) First class brick work with CM 1:4
  - iv) 20mm thick cement plaster 1:3 in floor and channel.

(20 Marks)

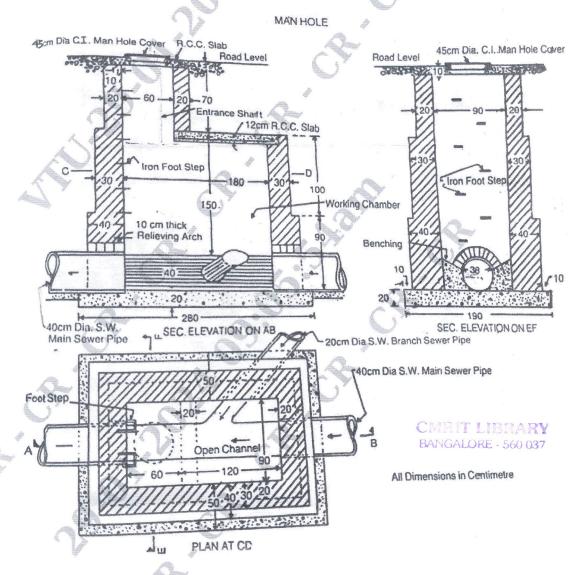



Fig.Q.3

#### OR

Estimate the quantity of earthwork in banking and cutting by mid sectional area method for a portion of road from the following data:

| a portion of road nom the results. |    |       |                                  |     |     |     |     |     |                           |     |     |      |     |       |
|------------------------------------|----|-------|----------------------------------|-----|-----|-----|-----|-----|---------------------------|-----|-----|------|-----|-------|
| Distance                           | in |       |                                  |     |     |     |     | 4   | **                        |     |     |      |     | 100   |
| 'm'                                |    |       |                                  |     |     |     |     | 3   |                           |     |     |      |     | 0     |
|                                    |    |       | 0                                | 0   | 300 | 400 | 500 | 009 | 700                       | 800 | 900 | 1000 | 100 | 1200  |
| - 12                               |    | 0     | 100                              | 200 | 3(  | 4   | 5(  | )9  | 7                         | 8   | 6   | =    |     |       |
| R.L                                | of |       |                                  |     |     | 1   |     |     |                           |     |     |      |     |       |
| ground                             |    | 0     | 0                                | 00. | .20 | 0   | 0.0 | 00  | 25                        | 0   | 80  | 75   | 80  | 20    |
| 8-1-1-1                            |    | 14.00 | 14.60                            | 5.0 | 5.2 | 6.1 | 6.5 | ∞ . | ∞:                        | ∞.  | 7.8 | 7.   | _   | 19.20 |
|                                    |    | =     |                                  | =   | =   | =   | =   | 11  | =                         |     | Ξ   | 11   | 1   |       |
| R.L                                | of | 115.0 | Upward gradient of 1 in 200 upto |     |     |     |     |     | Downward gradient of 1 in |     |     |      |     |       |
| formation                          | _  |       | 600n                             |     | 77  |     |     |     | 400                       | w.  |     |      |     |       |
| Torritation                        |    |       | 55011                            |     | >   |     |     |     |                           |     |     |      |     |       |

Formation width of road is 10m. Side slope 2:1 in banking and 1.5:1 in cutting.

# Module-3

- Write detailed technical specification for the following:
  - i) 12mm thick plastering for walls with CM1:6
  - ii) First class brick masonary for super structure CM1:4
  - iii) Earthwork excavation for foundation
  - iv) Mosaic/Terrazo flooring.

(20 Marks)

(20 Marks)

#### OI

- 6 Carryout the rate analysis for the following:
  - i) Cement concrete CC 1:2:4 for RCC works.
  - ii) R.C.C.  $1:1\frac{1}{2}:3$  for roof slab.
  - iii) 1<sup>st</sup> class BBM in CM1:6 for superstructure.
  - iv) 20mm thick DPC with CM1:5.

(20 Marks)

# Module-4

What are the different types of contract? Explain any four types of contracts?

(20 Marks)

## OR

8 Explain the procedure of tendering and award of works in civil engineering projects.

(20 Marks)

# Module-5

- 9 Write short notes about any four of the following
  - i) Performance security
  - ii) Breach of contract
  - iii) Mobilization and equipment advances
  - iv) Contract management
  - v) Liquidated damages.

CMEIT LIBRARY

(20 Marks)

OR

BANGALORE - 560 037

10 a. Explain the methods of valuation.

(10 Marks)

b. A building of replacement value of about Rs.7,00,000/- stands on a main road on a leasehold plot. The ground rent per annum is Rs.2950/-. The building is of R.C.C. framed structure type. It is estimated that the building will have a future life of 70 years. The rent of the building is Rs.4000/- per month. The taxes payable are 18% of the gross rent and insurance premium is 0.5% of the gross rent. Assuming suitable figures for other items of the usual outgoings. Determine the capitalized value of the property on the basis of a 5% net yield. The S.F coefficient for the replacement of the capital is 70 years at 3% is 0.0043. (10 Marks)

\* \* \* \* \*