3

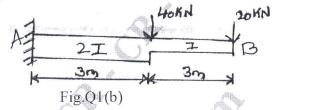
CBCS SCHEME

21CV44

Fourth-Semester B.E. Degree Examination, Dec.2023/Jan.2024

Analysis of Structures

Time: 3 hrs.


Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Assume missing data, if any.

Module-1

- a. State and prove Mohr's theorems for slope and deflection of prismatic beam. (10 Marks)
 - b. Find the slope and deflection at free end of the cantilever beam shown in Fig.Q1(b) by moment area method.

(10 Marks)

OR

2 a. Calculate slope at support and deflection under the point load by conjugate beam method for beam shown in Fig.Q2(a).

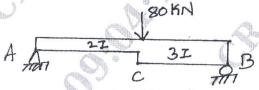
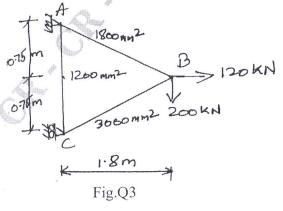
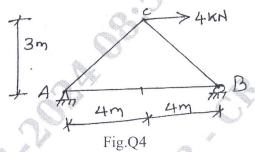



Fig.Q2(a) (10 Marks)


- b. For a simply supported beam subjected to point loads at one third points. Calculate max slope and maximum deflection. (10 Marks)
- Module-2

 A truss is loaded as shown in Fig.Q3. The cross sectional area as indicated in figure. Find strain energy stored due to loading. Take E = 72 GPa.

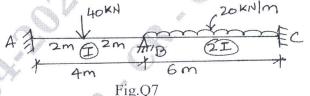
(20 Marks)

For the truss shown in Fig.Q4. The cross sectional area of each member is 400 mm². Take 4 E = 200 GPa. Determine the vertical deflection at joint C if 4 kN force is applied to the truss at 'C'.

(20 Marks)

Module-3

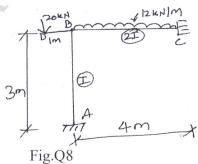
- A three hinged symmetrical parabolic arch has a span of 30 m and a central rise of 6 m. The 5 arch carries a uniformly distributed load of intensity 30 kN/m over left half portion and a concentrated load of 60 kN at 9m from right had support. Compute the:
 - Bending moment
 - (ii) Normal thrust
 - (iii) Radial shear at 9m from left support. Also draw the B.M.D.


(20 Marks)

OR

A suspension bridge of 120 m span has a central dip of 12 m and support a U.D.L. of 6 15 kN/m over the span. Calculate the maximum and minimum tension in cable, size of the cable if the permissible stress of the cable material is 200 N/mm². The length of the cable and forces in the tower if the cable is passing over a smooth pulley. Take height of the tower h = 20 m and inclination of anchor cable = 25°. (20 Marks)

> CMRIT LIBRARY BANGALORE - 560 037 Module-4


Analyze the continuous beam shown in Fig.Q7 by slope deflection method and draw 7 bending moment, shear force diagram and elastic curve. Consider Young's modulus E to be same, throughout the beam

(20 Marks)

OR

Analyze the frame shown in Fig.Q8 by slope deflection method and draw bending moment 8 diagram. E = constant.

2 of 3

(20 Marks)

Module-5
Analyze the beam shown in Fig.Q9. By stiffness matrix method, take E same throughout the 9 beam. Draw S.F.D and B.M.D.

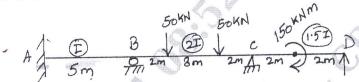
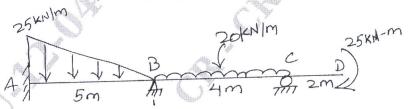



Fig.Q9

(20 Marks)

Analyze the beam shown in Fig.Q10. By stiffness matrix method, the support B sinks by 10 10 mm. Take $E = 2047 \text{ kN/m}, I = 4162 \times 10^4 \text{ mm}^4$.

(20 Marks)