Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Sixth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Operating Systems

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. What is Operating System? What are its goals? Discuss its roles from different perspectives.
 (10 Marks)
 - b. List out three main advantages of multi processor system. Distinguish between symmetric and asymmetric multiprocessing. (10 Marks)

OR

- 2 a. What is a process? Draw and explain the process state diagram. (10 Marks)
 - b. Explain the implementation of inter process communication using shared memory and message passing. (10 Marks)

Module-2

- 3 a. What is a thread? What is the need for multithreaded processes? Explain 3 models of multithreaded programming. (10 Marks)
 - b. What is semaphore? How it can be used to solve mutual exclusion problem? Give solution to bounded buffer problem using semaphore. (10 Marks)

OR

- 4 a. What are the necessary and sufficient conditions for deadlocks? Briefly explain. (10 Marks)
 - b. Define Dining Philosopher's problem and give solution for the same using monitor.

(10 Marks)

Module-3

- 5 a. Describe a resource allocation graph
 - i) With a deadlock
 - ii) With a cycle but no deadlock.

(08 Marks)

b. Determine whether the following system is in safe state by using Banker's algorithm.

Process	Allocation			Maximum			Available		
	A	В	C	A	В	C	A	В	C
P ₀	0	1	0	7	5	3	3	3	2
P ₁	2	0	0	3	2	2			
P ₂	3	0	2	9	0	2			
P ₃	2	1	1	2	2	2			
P ₄	0	0	2	4	3	3			

If a request for P_1 arrives for $(1\ 0\ 2)$, can the request be granted immediately?

OR

- Explain in detail internal and external fragmentations. How these problems are overcome? (10 Marks)
 - With an example, explain the concept of paging in paging what is the worst case and avg (10 Marks) internal fragmentation per process.

Module-4

- What is virtual memory? How can it be implemented? What are its benefits? (10 Marks) 7
 - Explain: i) Demand paging ii) Dynamic linking iii) Copy-on-write viv) Thrashing. (10 Marks)

List and explain different file types, file attributes and file operations. (10 Marks) 8 Explain different types of directory structures with examples and their advantages and (10 Marks) disadvantages.

- Explain contiguous allocation of disk space methods. BANGALORE 560 037 (08 Marks)
 - Describe Bit vector and linked list, grouping approaches to managing free space on a disk. (06 Marks)
 - What is a boot block and bad block? Explain the techniques used for handling bad blocks. (06 Marks)

- Define the following terms with ref to scheduling:
 - Constant Linear Velocity (CLV) i)
 - Constant Angular Velocity (CAV) ii)
 - Seek time iii)
 - Rotational latency.

(10 Marks)

- Explain the following disk scheduling in brief with examples:
 - iv) LOOK.
 - i) FCFS
- ii) SSTF
- iii) SCAN

(10 Marks)