2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Sixth Semester B.E. Degree Examination, Dec.2023/Jan.2024 **File Structure**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

		Module-1	
1	a.	What are physical and logical files? Explain basic file handling operation.	(10 Marks)
	b.	Briefly explain field and record structures with examples.	(10 Marks)
		OR	

- 2 Calculate the space requirement on Tape, if we want to store 1 million 100 bytes records on 7250 bpi tape that has an internal block gap of 0.2 inches and with a blocking factor of 1 and blocking factor 60. (10 Marks)
 - b. Write brief notes on:
 - Performance of sequential search. (i)
 - Performance of Direct access and RRN.

(10 Marks)

Module-2

- Describe the operations required to maintain an indexed file in detail. (10 Marks)
 - Briefly explain the reclaiming space in files dynamically for deleting in fixed length records. (10 Marks)

- Explain the limitation of Binary searching and internal sorting.
 - Explain key sorting with example.

(10 Marks) (10 Marks)

Module-3

- Apply K-way merge technique for merging large number of lists. Demonstrate with an 5 (10 Marks)
 - Explain consequential match using single loop. Demonstrate with example.

(10 Marks)

- What is multilevel indexing? Explain the concept of B-tree in multilevel index with an example. (10 Marks)
 - With example, explain deletion, merging and redistribution in B-trees.

(10 Marks)

Module-4

What is indexed sequential ocean? With example explain maintaining a sequence set. 7

(10 Marks)

Give the internal structure of index set block.

(10 Marks)

OR

8 a. With a neat sketch, discuss simple prefix B⁺ tree and its maintenance.
b. Explain the use of blocks and choice of block size.
(10 Marks)
(10 Marks)

Module-5

9 a. What is hashing? Write an hashing algorithm and explain with an example.
b. What is collosion? Explain collosion resolution by progressive overflow.
(10 Marks)
(10 Marks)

OR

- 10 a. Explain the working of extendible hashing.

 b. Write a note on:

 CMRIT LIBRARY

 RANGALORE 560 037

 (10 Marks)
 - b. Write a note on:(i) Double hashing.
 - (ii) Extendible hashing performance.

(10 Marks)

* * * * *