# Fifth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module-1

- 1 a. Construct the DFSM for the following languages:
  - (i)  $L = \{W \mid W \in \{a,b\}^* \mid W \text{ does not contain the substring a a b}\}$
  - (ii)  $L = \{W \mid W \in \{a, b\}^* \text{ where W ends either with a b or b a} \}$

(08 Marks) (08 Marks)

b. Minimize the given Fig. Q1 (b) DFSM by applying min DFSM method.

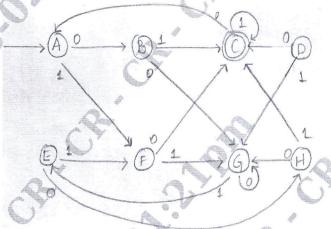



Fig. Q1 (b).

c. Explain the operations on strings and languages.

(04 Marks)

### OR

a. By applying ndfsm to dfsm convert the given Fig. Q2 (a) DFSM to its equivalent DFSM.
(10 Marks)

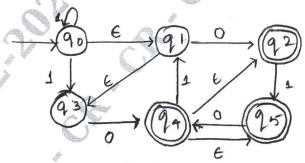



Fig. Q2 (a)

b. Construct DFSM for the language,

 $L = \{W \mid W \in \{a, b\} \text{ where } W \text{ is having even number of a's and odd number of b's} \}$ 

(05 Marks)

c. Explain the difference between DFSM and NDFSM with example.

(05 Marks)

# Module-2

- 3 a. Illustrate that the regular languages are closed under union, concatenation and compliment.
  (10 Marks)
  - b. State and prove pumping Lemma for regular languages and prove that the following languages are not regular.
    - (i)  $L = \{a^n b^n \mid n \ge 0\}$
    - (ii)  $L = \{WW^R \mid W \in \{a, b\}^*\}$

(10 Marks)

## OR

4 a. Consider the FSM M given in Fig. Q4 (a). Use the fsmtoregx heuristic method to construct a regular expression that describe L(m). (08 Marks)

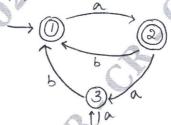



Fig. Q4 (a)

- b. Write the regular expression for the following languages;
  - (i)  $L = \{a^{2n}b^{2m} \mid n \ge 0, m \ge 0\}$
  - (ii)  $L = \{a^n b^m \mid m \ge 1, n \ge 1, n + m \ge 3\}$
  - (iii)  $L = \{W \mid W \in \{a, b\}^* \text{ and } |W| \text{ is multiples of 3}\}.$  (06 Marks)
- c. Draw a FSM for the given below regular expressions:
  - (i)  $(0+1)^* o (0+1)^* o$
  - (ii)  $ab(a+b)^*a$

(06 Marks)

#### Module-3

- 5 a. Obtain a context free Grammar for the language:
  - (i)  $L = \{0^{2n}1^m \mid n \ge 0, m \ge 0\}$

(ii) 
$$L = \{0^i 1^j 2^k \mid i = j \text{ or } j = k\}, i, j, k \ge 0$$

(04 Marks)

b. Convert the following CFG into CNF:

$$R = \{A \rightarrow a\}$$

$$B \rightarrow b \mid bR$$

$$A \rightarrow aB$$

$$C \rightarrow C \mid cC$$

 $A \rightarrow BaC$ 

 $A \rightarrow BbC$ 

} where A is the start symbol

(06 Marks)

c. Design a PDA to accept the language  $L = \{a^n b^n \mid n \ge 0\}$ , draw the transition diagram and show the string acceptance for W=aaabbb. (10 Marks)

#### OR

- 6 a. What is ambiguous grammar? Prove that the given grammar is ambiguous :  $S \rightarrow (S) |SS| \in CMRIT LIBRARY$  (06 Marks)
  - b. Design a PDA for the language  $L = \{WCW^R \mid W \in \{a,b\}^*\}$  and draw the transition diagram and show the string acceptance for W = a a b c b a a. (10 Marks)

Convert the following CFG to CNF

R = { S 
$$\rightarrow$$
 XY  
X  $\rightarrow$  A  
A  $\rightarrow$  B/a  
Y  $\rightarrow$  bT  
T  $\rightarrow$  Y/C  
}

(04 Marks)

Module-4

Design a Turing Machine to accept  $L = \{0^n 1^n 2^n \mid n \ge 0\}$ . Draw the transition diagram and show the moves made for the string W = a a b b c c.

b. Explain multitape Turing machine and prove that language accepted by multitape turing machine is also accepted by singletape turing machine. (10 Marks)

Explain non-deterministic turing machine and prove that there exists equivalent DTM.

CMRIT LIBRARY (10 Marks) b. Design a Turing machine for the language, BANGALORE - 560 037  $L = \{W \mid W \in \{a, b\}^* \text{ where W is a string of palindrome of } | \text{ odd or even length} \}.$ Draw the transition diagram. Show the string acceptance for W = ababa. (10 Marks)

Module-5

(07 Marks) Explain post correspondence problem. (06 Marks) Explain Halting problem in Turing machine.

(07 Marks)

Explain recursively enumerable language.

Write short notes on: 10

- Growth rate of function. a.
- Classes of P & NP b.
- Ouantum computers.
- Church Turing Thesis

(20 Marks)