USN

Time: 3 hrs

# Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Data Communication

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module-1

- 1 a. With a neat diagram, explain the components of data communication. (06 Marks)
  - b. With necessary diagrams, give the advantages and disadvantages of star and mesh topology.
    (08 Marks)
  - c. A channel with a 1-MHz bandwidth has a SNR value 15. Calculate bit rate and signal levels. (06 Marks)

## OR

- 2 a. What is data communication? Explain the fundamental characteristics of data communication. (06 Marks)
  - b. With a neat diagram, explain encapsulation and decapsulation process in TCP/IP model.
  - c. Calculate the propagation time and the transmission time for a 2.5 Kbyte message, if the bandwidth of the network is 1 Gbps. Assume that the distance between the sender and the receiver is 12,000 km and that light travels at 2.4×10<sup>8</sup> m/s. (06 Marks)

# Module-2

- 3 a. With a neat diagram, illustrate pulse code modulation encoder and decoder along with quantization levels. (12 Marks)
  - b. Represent sequence 01001110 using polar NRZ-L, Manchester, AMI and psuedoternary line coding schemes. (08 Marks)

## OR

- 4 a. With appropriate diagrams, explain transmission modes in physical layer. (10 Marks)
  - b. With necessary diagrams, explain amplitude shift keying and frequency shift keying along with the implementation and bandwidth requirements. (10 Marks)

## Module-3

- 5 a. What is spread spectrum? Describe two different techniques to spread the bandwidth.
  - b. Four channels are multiplexed using Time division multiplexing. If each channel sends 100 bytes/s and we multiplex 1 byte per channel, show the frame travelling on the link, the size of the frame, the duration of a frame and bit rate for the link. (10 Marks)

#### OR

- 6 a. With appropriate diagrams, explain frequency division multiplexing and wavelength division multiplexing. (10 Marks)
  - b. A bit stream 10011101 is transmitted using the standard CRC method. The generator polynomial is  $x^3 + 1$ . What is the actual bit string transmitted? Suppose the third bit from the left is inverted during transmission. How will receiver detect this error? (10 Marks)

Module-4

- With a neat flow diagram, illustrate the working of CSMA/CA protocol. (10 Marks) 7 Explain the three channelization protocols in the data link layer. b.

(10 Marks)

OR

- With neat FSM state diagram at the sender and receiver, explain stop and wait protocol. 8 (10 Marks)
  - With necessary diagrams, explain any two controlled access protocols. b.

(10 Marks)

Module-5

- Describe the frame format of standard Ethernet. (10 Marks) 9 With necessary diagrams, explain the architecture of IEEE 802.11 standard. (10 Marks)

OR

- With neat diagram, explain the Bluetooth architecture. (10 Marks) 10
  - Explain the operation of cellular telephony.

(10 Marks)