BCS303

Third Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 Operating Systems

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define Operating System. Explain dual mode of OS with a neat diagram.	5	L1,	CO1
				L2	
	b.	Distinguish between the following terms:	10	L2	CO ₁
		i) Multiprogramming and Multitasking			
		ii) Multiprocessor system and clustered system.			
	0	With a neat diagram, explain the concept the concept of VM-WARE	5	L1,	COI
	c.	architecture.	5	L2	CO.
		dicintocture.			
		OR			
Q.2	a.	Explain the operating system services with respect to programs and users.	5	L2	CO
	b.	List and explain the different computing environments.	5	L1,	CO
		11 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	L2	COI
	c.	What are system calls? List and explain the different types of system calls.	10	L1, L2	CO
		Module – 2		LZ	
0.2		Define process. Explain different states of a process with state diagram.	8	L1,	CO
Q.3	a.	Define process. Explain different states of a process with state diagram.	0	L1, L2	CO.
15	b.	What is IPC? Explain direct and indirect communication with respect to	8	L1,	CO
	0.	message passing.		L2	
6		message passing.			
	c.	Explain context-switching.	4	L2	CO ₂
	_	OR			004
Q.4	a.	What is multi-threaded process? Explain the four benefits of multithreaded	6	L2	CO2
		programming.			
	b.	Calculate the average waiting time and average turn around time by	14	L3	CO2
		drawing the Gantt-chart using FCFS, SJF-non preemptive, SRTF,			
	g/ff	RR(q = 2ms) and porosity algorithms.			
		Process Arrival time Burst time Porosity			
		P1 0 9 3			
		P2 1 4 2			
		P3 2 9 1			
		P4 3 5 4			
		NA LINE			
0.7	17	Module – 3 What is spitial section? What are the requirements for the solution to	O	T 1	CO.
Q.5	a.	What is critical section? What are the requirements for the solution to	8	L1, L2	CO.
		critical section problem? Explain Peaterson's solution.		LZ	
	b.	Explain Reader's-Writer's problem using semaphores.	12	L2	CO.
		1000			

				BC	S303
		OR			
Q.6	a.	What is deadlock? What are the necessary conditions for the deadlock to occur?	6	L1, L2	CO3
	b.	Consider the following snap-shot of a system: Process Allocation Max Available A B C D A B C D A B C D A B C D P0 2 0 0 1 4 2 1 2 3 3 2 1 2 1 2 3 3 2 1 P1 3 1 2 1 5 2 5 2 2 2 1 0 3 2 3 1 6 P3 1 3 1 2 1 4 2 4 4 2 4 P4 1 4 3 2 3 6 6 5 3 6 6 5 Answer the following using Banker's algorithm: i) Is the system in safe state? If so give the safe sequence. ii) If process P2 requests (0, 1, 1, 3) resource can it be granted immediately.	14	L3	CO3
Q.7	a.	Module – 4 What is paging? Explain with neat diagram paging hardware with TLB?	10	L1, L2	CO4
	b.	What are the commonly used strategies to select a free hole from the available holes?	6	L1	CO4
41	c.	Explain fragmentation in detail.	4	L2	CO4
		OR		1	
Q.8	a.	With a neat diagram? Describe the steps in handling the page fault.	8	L2	CO4
	b.	Consider the page reference string: 1, 0, 7, 1, 0, 2, 1, 2, 3, 0, 3, 2, 4, 0, 3, 6, 2, 1 for a memory with 3 frames. Determine the number of page faults using F1, F0, optimal and LRU replacement algorithms which algorithm is more efficient.	12	L3	CO4
		Module – 5			
Q.9	a.	Define file. List and explain the different file attributes and operations.	10	L1	CO5
	b.	Explain the different allocation methods.	10	L2	CO5
		OR			
Q.10	a.	What is Access Matrix? Explain Access Matrix method of system protection with domain as objects and its implementation. CMRIT LIBRA BANGALORE - 560		L1, L2	COS
	b.	A drive has 5000 cylinders numbered 0 to 4999. The drive is currently serving a request 143 and previously serviced a request at 125. The queue of pending requests in FIFO order is: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130 starting from current head position. What is the total distance travelled (in cylinders) by disk arm to satisfy the requests using FCFS, SSTF, SCAN, LOOK and C-LOOK algorithm.	10	L3	COS