CBCS SCHEME

17EE52 Fifth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Microcontroller Time: 3 hrs. Max. Marks: 100 Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Distinguish between: (i) GPP and Microcontroller (ii) RISC and CISC Machines. (08 Marks) What is stack? Explain the functions of PUSH and POP with examples.
 - b. For the following microcontrollers ICs, determine the ROM memory address of AT89C51 with 4 KB, DS89C420 with 16 KB and DS 5000 with 32 KB. (04 Marks)

OR

- Explain the internal RAM organization of 8051 with suitable diagrams. (08 Marks)
 - Explain the bit pattern of program status word register. (08 Marks)
 - Identify the addressing modes of the following instructions:
 - (i) MOV A, #25H
- (ii) MOV A, @R_i
- (iii) MOV C, @A+PC
- (iv) CLR C

(04 Marks)

Module-2

- Explain the functions of the assembler directives DB, EQU, END, ORG. (08 Marks)
 - b. Briefly explain the steps involved to create a program in an ALP. (08 Marks)
 - Explain the following instructions with examples:

(i) DA A

(ii) SUBB A, R₂

(04 Marks)

- Write 8051 ALP which checks whether the ten numbers stored from external RAM memory address 3000H are positive/negative. The program should store accordingly 00H/FFH from internal RAM location 30H onwards.
 - b. Find the contents of A and carry flag after the execution of the following instructions. Assume [A] = 25H and [C] = 1 before the execution of instructions.

ADD A, #25H

SUBB A, #50H

ADDC A, #0FCH

(06 Marks)

A student has taken 6 courses in a semester the marks of the student out of 25 are stored in RAM locations 50h onwards. Write a program to find the average marks and save it in $R_{\rm 6}$.

(04 Marks)

Module-3

- Write an 8051 C program to read the content of port P₁. If it is greater than 200, wait for 250 msec and send the data to port P2, otherwise wait for 150 msec and send the data to (08 Marks) port P₀.
 - b. Write an 8051 C program to convert ASCII digits of 4 and 7 to packed BCD and display (08 Marks)
 - Explain with an example, bitwise logic operators for 8051 C.

OR

- 6 a. Explain about timer/counter control logic diagram and also briefly explain various timers mode of operation. (08 Marks)
 - b. Write an ALP to generate 5 kHz square wave on P2.7 using timer 1 in mode 2. Assume 11.0592 MHz crystal oscillator. (06 Marks)
 - c. Write 8051 C program to toggle only bit P1.5 continuously every 50 ms. Use timer 0, mode 1 to create delay. (06 Marks)

Module-4

- 7 a. Write the steps required for programming 8051 to transfer data serially. (06 Marks)
 - b. Write an ALP to transmit "VTU EXAMS" at 9600 baud to a PC using serial port. (06 Marks)
 - c. Write an 8051 C program to send two strings to serial port. Monitor switch SW connected to pin P2.0 and make decision as SW = 0, send "NO", SW = 1 send "YES". Assume XTAL = 11.0592 MHz, baud rate = 9600, 8 bit data, 1 stop bit. (08 Marks)

OR

- 8 a. Explain the interrupts of 8051 clearly mentioning the vector address and priorities. (08 Marks)
 - b. Explain the bit pattern of IE register. Also mention the steps involved in enabling an interrupt. (06 Marks)
 - c. Write an ALP that continuously gets 8 bit data from P₀ and sends it to P₁ while simultaneously creating a square wave of 200 µs period on pin P2.1. Use timer 0, mode 2 to create square wave, XTAL = 11.0592 MHz. (06 Marks)

Module-5 CMRIT LIBRARY

RANGALORE - 560 037

- 9 a. Interface an LCD display to 8051 and write an ALP to display the message "HELLO".

 (10 Marks)
 - b. Explain the internal architecture of ADC 0804 and its timing diagram to convert analog data to digital form. (10 Marks)

OR

- 10 a. A switch is connected to pin P2.7. Write a C program to monitor the status of 'SW' and perform the following:
 - (i) If SW = 0, stepper motor moves clockwise
 - (ii) If SW = 1, stepper motor moves counter clockwise (10 Marks)
 - b. Explain the various modes of 8255 and find the control word for the following configurations:
 - (i) All ports of A, B and C are o/p ports (mode '0')
 - (ii) $P_A = IN$, $P_B = OUT$, PCL = OUT and PCH = OUT.

(10 Marks)

ate ate ate ate ate