

Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024

Electromagnetic Field Theory

Time: 3 hrs.

MANGALORE

Max. Marks: 80

15EE45

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. State and explain Coulomb's law of force between the two point charges. Also indicate the units of quantities in the force equation. (05 Marks)
 - b. Electric charge lies in the plane at Z = -4m in the form of a square sheet prescribed by $-2 \le x \le 2m$, $-2 \le y \le 2m$. Charge density $\rho_s = 2(x^2 + y^2 + 16)^{3/2} \eta c/m^2$. Determine electric field intensity 'E' at origin. (06 Marks)
 - c. Find: i) Electric field intensity ii) Electric flux density at the origin due to $Q_1 = 0.35\mu c$ at (0, 4, 0)m and $Q_2 = -0.55\mu c$ at (3, 0, 0)m. (05 Marks)

OR

- a. Define electric field intensity. Obtain an expression for the electric field intensity (E) due to an infinite line charge along Z axis having a uniform charge density ρ_L c/m, using Coulomb's law.
 - b. If $\overline{D} = 10e^{-2z}(\rho \overline{a}_{\rho} + \overline{a}_{z})c/m^{2}$, determine the flux of \overline{D} out of the entire surface of the cylinder $\rho = 1$, $0 \le z \le 1$, confirm the result by using divergence theorem. (08 Marks)

Module-2

3 a. Find the work done in moving a charge $Q = 5\mu c$ in the electric field given by

 $E = 4x\overline{a}_x - 3y\overline{a}_y \text{ v/m from}$

- i) (3, 0, 0) to $(0, 3, 0)_m$ and from (0, 0, 0) to $(0, 3, 0)_m$
- ii) From (3, 0, 0) to (0, 3, 0) along the st-line path.

(06 Marks)

b. With usual notation prove that $E = -\nabla v$.

(06 Marks)

c. A 15 η c charge is located at origin in free space. Calculate V_p if P is located at P(-2, 3, -1) and V=0 at infinity. (04 Marks)

OR

4 a. Derive an expression for energy expended in moving a point charge in an electric field.

(06 Marks)

- b. For a line charge $\rho_L = 10^{-9}/2$ c/m on the z-axis, find V_{AB} where A is $(2m, \pi/2, 0)$ and B is $(4m, \pi, 5m)$.
- Evaluate the capacitance of two concentric spherical conducting shells of radius 'a' and 'b' with b > a.

Module-3

- 5 a. Derive Poisson's and Laplace equation starting from point form of Gauss law and write the equation in three coordinate systems. (08 Marks)
 - b. Determine whether or not the following potential field satisfy the Laplace equations:
 - i) $V = x^2 y^2 + z^2$
 - ii) $V = r\cos\phi + z$
 - iii) $V = r\cos\theta + \phi$
 - iv) V = 2x + 5y z.

(08 Marks)

OR

6 a. Show that $\operatorname{curl} H = J$ in a steady magnetic field.

(08 Marks)

b. Derive the expression for \overline{H} on the axis of a circular loop.

(08 Marks)

Module-4

- 7 a. Derive the Lorentz force equation and mention the application of the solution. (06 Marks)
 - b. Calculate the inductance of solenoid of 200 turns wound tightly on a cylindrical tube of length 60cm and diameter of 6cm. Given that medium is air. (04 Marks)
 - c. Explain the terms magnetization and permeability.

(06 Marks)

OR

- 8 a. Obtain the boundary conditions at the interface between two magnetic materials. (06 Marks)
 - b. Derive the equation for force between two differential current carrying elements. (06 Marks)
 - c. Define self inductance and mutual inductance with suitable formulae. (04 Marks)

Module-5

9 a. State Faraday's law and obtain point and integral form of electromagnetic induction.

(06 Marks)

b. Write a note on retarded potential.

(06 Marks)

c. For a electromagnetic wave, show that E and H is mutually perpendicular to each other.

(04 Marks)

OR

CMRIT LIBRARY

- 10 a. State and prove Pointing theorem.
- BANGALORE 560 037
- (06 Marks)
- b. Discuss the following i) Standing wave ii) Standing wave ratio.
- (06 Marks)
- c. Find the frequency at which conduction current density and displacement current density are equal in a medium with $\sigma = 2 \times 10^4$ s/m and $\epsilon_r = 81$. (04 Marks)

* * * * *