18EE45

Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024

Electromagnetic Field Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

# Module-1

- 1 a. Given:  $\vec{A} = 2\hat{a}_x \hat{a}_y + 3\hat{a}_z$  and  $\vec{B} = -5\hat{a}_x 6\hat{a}_y + 7\hat{a}_z$ . Find  $\vec{A} \times \vec{B}$  set's magnitude.
  - Derive relation between cylindrical and rectangular coordinate system. (06 Marks)
  - c. State and prove coulomb's law in vector form. (08 Marks)

### OR

- 2 a. Derive expression for electric field intensity due to several charges. (07 Marks)
  - b. Calculate field intensity at point P(1, 2, 3) due to charge of 10nc at A(2, 3, 4). (07 Marks)
  - c. State and prove Gauss law. (06 Marks)

## Module-2

- 3 a. State that  $E = -\nabla \cdot V$ . (07 Marks)
  - b. Given field intensity  $E = 40xy\hat{a}_x + 20x^2\hat{a}_y + 2\hat{a}_z$ , calculate the potential difference between two points P(1, -1, 0) and Q(2, 1, 3). (07 Marks)
  - c. Derive expression for potential due to several point charges. (06 Marks)

#### OR

- 4 a. Derive an expression for continuity of current equation. (10 Marks)
  - b. Find  $\vec{E}$  and  $\vec{J}$  considering the drift velocity of  $60 \times 10^{-4} \text{m/s}$  in the case of silver conductor using the data  $\sigma_{\text{silv}} = 61.7 \times 10^6 \text{s/m}$  and  $\mu_{\text{sil}} = 5.6 \times 10^{-3} \text{m}^2/\text{vs}$ . (10 Marks)

## Module-3

- 5 a. Given  $V = (Ar^4 + Br^{-4}) \sin 4\phi$ , show that  $\nabla^2 V = 0$ . (07 Marks)
  - b. Derive uniqueness theorem. (09 Marks)
  - c. Verify the potential field  $V = 2x^2 3y^2 + z^2$  satisfies the Laplace equation. (04 Marks)

#### OR

6 a. State and prove Amper's circuital law.

- (07 Marks)
- b. Given vector magnetic  $\vec{A} = x^2 \hat{a}_x 2yz\hat{a}_y + (-x^2)\hat{a}_z$ . Find magnetic flux density. (07 Marks
- c. Calculate the value of vector circuit density at P(2, 3, 4) if  $\vec{H} = x^2 z \hat{a}_y y^2 x \hat{a}_z$ . (06 Marks)

## Module-4

- 7 a. Derive expression for the force between two parallel current carrying conductors. (07 Marks)
  - b. Find torque on a square loop having at corner (-2, -2, 0), (2, -2, 0), (2, 2, 0) and (-2, 2, 0).
    - i) About origin by  $B = 0.4\hat{a}_x$
    - ii) About origin by  $B = 0.6\hat{a}_x 0.4\hat{a}_y$
    - iii) About origin by  $B = 0.4\hat{a}_x + 0.6\hat{a}_y 0.7\hat{a}_z$  take I = 0.8A.

(08 Marks)

- c. If a point of 2C moves with a velocity of  $(6\hat{a}_x + 3\hat{a}_y 5\hat{a}_z)$ m/s. Find force exerted:
  - i) If electric field intensity is  $(10\hat{u}_x + 8\hat{u}_y 5\hat{u}_z)$
  - ii) If flux density is  $(5\hat{u}_x + 4\hat{u}_y + 6\hat{u}_z)$  wb/m<sup>2</sup>.

(05 Marks)

### OR

8 a. Magnetic flux density is given as 1.2T when H = 300A/m when H is increased to 1500A/m. The B is increased to 1.5T what is the parentage change in the magnetization vector.

(07 Marks)

b. Derive an expression for inductance of a solenoid.

(06 Marks)

c. Derive an expression for energy stored in a magnetic field.

(07 Marks)

### Module-5

- 9 a. List Maxwell's equations in differential form and integral form. (08 Marks)
  - b. Derive expression for uniform plane wave propagating in free space.

## OR

10 a. Derive expression for pointing vector.

BANGALORE -

(10 Marks)

b. Explain and derive expression for skin depth.

(10 Marks)

(12 Marks)