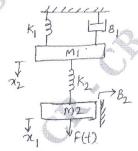
Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Control Systems

Time: 3 hrs.

Max. Marks: 100


Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Differentiate between Open loop and Closed loop control systems. (06 Marks)

b. For a mechanical system shown in Fig. Q1(b), obtain analogous electrical network by F – V analogy. (14 Marks)

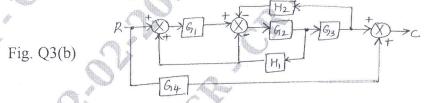
Fig. Q1(b)

OR

2 a. Explain the terms : i) Physical system ii) Physical model iii) Mathematical model iv) Transfer function.

tion. (08 Marks)

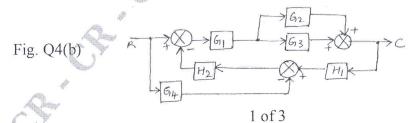
b. For a mechanical system shown in Fig. Q2(b), obtain analogous electrical network by T – V analogy. (12 Marks)


Fig. Q2(b) J_1 OOO J_2 J_3 OOO J_4

Module-2

3 a. Explain with block diagram, Reduction rules.

(08 Marks)


b. Using the block diagram, reduction techniques, find the Closed – loop transfer function of the system shown in Fig. Q3(b). (12 Marks)

OR

4 a. Write Mason's gain formula for signal flow graph and indicate the each term. (05 Marks)

b. Draw the signal flow graph for the system shown in Fig. Q4(b) and find $\frac{C(s)}{R(s)}$. (15 Marks)

Module-3

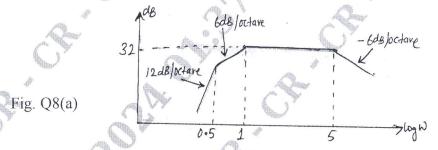
- a. Derive the time response of a critically damped second order system subjected to unit step 5 input.
 - $\frac{64}{S(s+9.6)}$, write the output response to a b. For a unity feedback control system with G(s) unit step input. Determine i) the response at t = 0.1S.
 - Maximum value of the response and the time at which it occurs
 - iii) Settling time at 2% tolerance.

(10 Marks)

- Obtain the steady state errors of Type -0, Type -1 and Type -2 systems for unit step 6 input and unit ramp input.
 - b. Derive expressions for rise time and peak time of a under damped second order system.

(08 Marks)

Module-4


a. Examine the stability of a system with characteristic equation $S^5 + S^4 + 2S^3 + 2S^2 + 3S + 5 = 0$. CMRIT LIBRARY

(06 Marks)

- BANGALORE 560 037 b. Consider a feedback system with characteristic equation $1 + \frac{K}{S(s+1)(s+2)} = 0$. Draw the
 - root locus and show clearly i) Breakaway points The frequency at which root locus crosses imaginary axis and corresponding vale of K (14 Marks)

For the Bode plot shown in Fig. Q8(a), find the transfer function: 8

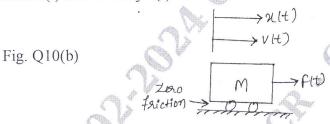
(10 Marks)

b. Consider a Closed loop feedback system shown in Fig. Q8(b). Determine the range of K for which the system is stable using Routh criteria. Find the value of K that will cause sustained oscillation in the system. Also find frequency of sustained oscillation.

Fig. Q8(b)
$$\begin{array}{c|c} & & & & \\ & & & \\ \hline & & & \\ \hline & &$$

Module-5

a. Draw the Polar plot for a system with Open loop transfer function G(s) $H(s) = \frac{1}{1 + Ts}$, where T is constant. (06 Marks) b. A unity feedback system has $G(s) = \frac{10}{S(s+1)(s+2)}$. Draw the Nyquist plot and comment on


Closed – loop stability.

(14 Marks)

CMRIT LIBRARY BANGALORE - 560 037

OR

- 10 a. Define State and State Variable. Explain the State model of linear systems. (08 Marks)
 - b. For a mechanical system shown in Fig.Q10(b), obtain the state model by choosing displacement x(t) and velocity v(t) as state variable. (12 Marks)

