

15EC44

Fourth Semester B.E. Degree Examination, Dec.2023/Jan.2024
Signals and Systems

Time: 3 hrs.

ORE

USN

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the odd part and even part of the signal given in Fig.Q1(a).

(08 Marks)

Fig.Q1(a)

b. Find 4x(-3n + 4), if x(n) is as shown in Fig.Q1(b).

(04 Marks)

Fig.Q1(b)

c. Find whether the signal is causal, linear, time variant and static for all values of 'n'. y(n) = x(-3n). (04 Marks)

OR

2 a. Find whether the given signal is periodic and if periodic, determine the period:

 $x(t) = a\cos(\sqrt{2}t) + b\sin(\frac{t}{4}).$

(04 Marks)

b. Sketch the following signal x(t) = r(t+1) - r(t-1) + 2r(-3).

(05 Marks)

c. Find $y(-t-2) \cdot x(\frac{t}{2}+1)$ if y(t) and x(t) are as shown in FigQ2(c).

(07 Marks)

Fig.Q2(c)

Module-2

- a. Derive the equation to determine the output of a linear time-invariant discrete-time system having impulse response h(n) and input x(n). Graphically illustrate with an example taking $x(n) = \{1, 2, 3\}$ and $h(n) = \{3, 2, 1\}$.
 - b. A continuous-time LTI system has impulse response $h(t) = e^{-2t} u(t)$. Compute the output of the system for input signal x(t) = u(t) u(t-5). (08 Marks)

OR

- 4 a. Prove that output of a linear time-invariant continuous-time system can be determined by computing the convolution integral of input signal and impulse response. Illustrate with an example taking x(t) = u(t) and h(t) = u(t). (08 Marks)
 - b. A discrete-time LTI system has impulse response $h(n) = 0.5^n u(n)$. Determine the output of the system for the input x(n) = u(n) u(n-10). (08 Marks)

Module-3

5 a. Define the following properties of DTFS:
i) Convolution ii) Periodicity iii) Linearity

(06 Marks)

b. Find the complex exponential Fourier series for the periodic rectangular pulse train shown in Fig.Q5(b). (10 Marks)

OR

6 a. Find the DTFS coefficients of the signal shown in Fig.Q6(a).

(10 Marks)

b. Find an expression for impulse response of interconnection of LTI systems shown in Fig. Q6(b). (06 Marks)

Module-4

- 7 a. Obtain the Fourier transform of the signal $x(t) = e^{-at} u(t)$. Plot its magnitude and phase spectra, taking a = 1. (08 Marks)
 - b. State and prove the time-shift property of DTFT.

 Obtain the Fourier Transform of a rectangular pulse given by
 - c. $x(t) = \begin{cases} 1, & -T < t < +T \\ 0, & \text{otherwise} \end{cases}$

(04 Marks)

OR

- 8 a. Find the DTFT of $x(n) = -a^n u(-n-1)$, where 'a' is real. (06 Marks)
 - b. Find the DTFT of $x(n) = (1/2)^n u(n-4)$ using the properties of DTFT. (06 Marks)
 - c. State and prove frequency shift property of continuous time Fourier Transform. (04 Marks)

Module-5

- 9 a. Explain properties of ROC with example. (06 Marks)
 - b. Determine the z-transform of the following signals

i)
$$x(n) = \left(\frac{1}{4}\right)^n u(n) - \left(\frac{1}{2}\right)^n u(-n-1)$$

ii)
$$x(n) = n\left(\frac{1}{2}\right)^n u(n)$$
 (10 Marks)

OR

10 a. Find the time domain signals corresponding to the following z-transforms.

$$x(z) = \frac{\left(\frac{1}{4}\right)z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)} \text{ with ROC } \frac{1}{4} < |z| < \frac{1}{2}.$$
CMRIT LIBRARY
BANGALORE - 560 037

b. Determine the transfer function and the impulse response for the causal LTI system described by the difference equation:

$$y(n) - \frac{1}{4}y(n-1) - \frac{3}{8}y(n-2) = -x(n) + 2x(n-1)$$
 (10 Marks)

* * * * *